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Abstract

Prior findings suggest that investors learn with experience. We study the complementary

channel of learning from data, particularly the effects of making additional predictive sig-

nals available to investors. We analyse a panel of systematic traders’ investment outcomes,

sourced from a FinTech platform that organises trading contests under highly-controlled

conditions that allow us to identify learning effects. Investor outcomes improve with ex-

perience, and this is also apparent when counterfactually assessing their trading decisions

on historical data, suggesting that they make use of historical data to attain their objec-

tives. Importantly, when additional predictive variables are added to the common part of

investors’ information sets, the individual-level dispersions of investors’ performance out-

comes narrow, while their relative performance outcomes improve at higher experience

levels. To explain why this widening of their common dataset benefits experienced in-

vestors, we model an investor as choosing a portfolio by learning from historical data while

also taking model uncertainty into account. The robust learner therefore ignores predic-

tive signals with historical predictive contributions below a subjective model uncertainty

threshold; we conjecture this threshold varies with experience.
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1 Introduction

The histories of signals available to investors have always lengthened with the passage of time:

even in the earliest days of Wall Street, ticker tape machines rolled out updated prices for

tradeable securities, and statistically the number of samples increased linearly with time. The

information available to investors has often widened too, as additional predictive signals have

become available (perhaps through a conscious information choice decision by the investor).

The current interest in Big Data relates to the latter phenomenon: thanks to an explosion in

data collection and advances in processing techniques, investors now have access to many more

predictive signals. Figure 1 illustrates this distinction.

[Insert Figure 1 about here]

How do investors learn from these additional signals? Equivalently, how do investors learn

as their datasets grow wider? In this paper we empirically quantify the effect of adding new

predictive variables to the common part of investors’ information sets, and disentangle this

effect from previous findings on investor learning with experience (or “learning by doing”).

We do so using a panel from a unique setting: a FinTech platform called Quantiacs that

runs contests for what we term “systematic investors”. These systematic investors design

and submit trading strategies based on historical data from a “backtest” period. The resulting

strategies take as inputs a common set of actual market data that is updated daily during a “live”

trading period – based upon this data, each strategy chooses a portfolio of futures contracts

without any input from the systematic investor, who has thus precommitted to following the

systematic trading strategy during the live period.1 Systematic trading styles are increasingly

popular: for example, approximately 30% of all hedge fund assets under management were

held by systematic (also called “quant”) investors in late 2019.2 In our institutional setting,

individual investors ultimately seek an investment mandate from Quantiacs: after each contest

ends, profit-sharing investments are offered to the top 3 contestants, as determined by a score

that incentivises the systematic investors to maximize the Sharpe Ratios of their portfolio

returns during the live period. After several years of running such contests, the platform

suddenly introduced an additional set of macroeconomic signals to investors for them to use

in making their trading decisions. This controlled change by the platform represents a sudden

widening of the information available to a subset of the investors in our panel. We exploit this

1The platform uses the term “live” trading although no actual assets are managed so it would be more accurate
to call this “paper” trading. Also, the “investors” are really “potential investors” as they do not receive any funding
until the contests are over. We emphasise, however, that actual market data is always used.

2The Economist: “March of the machines”, Oct 5th 2019: https://www.economist.com/briefing/
2019/10/05/the-stockmarket-is-now-run-by-computers-algorithms-and-passive-managers
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institutional feature to detect whether and how investors’ performance outcomes were affected,

and therefore reason about their learning mechanisms.

In general, our institutional setting has several distinctive features that help us make in-

ferences about investors’ (unobservable) learning mechanisms based on their observed per-

formance outcomes. Firstly, the common part of investors’ information sets is known at all

points in time and the platform’s introduction of additional predictive signals may be taken to

be exogenous, rather than relying on an endogenous information choice motive by investors.

Agents have a common limitation on what information their trading strategies can make use of

at all points in time, being restricted to the set of predictive signals provided by the trading plat-

form, without the ability to base their systematic trading decisions on any information that is

external to the platform. Investors also share the same preferences, as they are all incentivized

to maximize their live-period Sharpe Ratios; this frees them from strategic considerations and

puts them in a perfectly competitive setup because agents cannot affect each others’ payoffs,

whether through price impact or observability of actions. The contestants are also freed from

consideration of some well-known drivers of portfolio choice that might confound our analysis,

including wealth effects, background risk and horizon effects. Since the investors in our panel

are individuals, not institutions, we therefore study how investors in general use historical data

to choose their portfolios, under unique conditions that control access to a common information

set. Our panel of performance outcomes consists of backtest & live-period Sharpe Ratios for

systematic investors and the trading contests that they (repeatedly) participate in. An investor

who improves her live-period Sharpe Ratio can be inferred as having learned how to do so, and

therefore learning effects can be detected and related to data availability and experience.

We begin by confirming that investors learn with experience (i.e. participating in multiple

contests over time) and also detect an overconfidence effect: relative outperformance in a

previous contest is associated with poorer performance in the current contest. The prior empir-

ical literature on investor learning has also found evidence of experience and overconfidence

effects, in different settings.

The investors in our setting can make use of historical data provided to them by the trading

platform. As the overarching goal of our study is to investigate how investors learn from data,

we examine whether and how investors make use of this historical data: we find that, with

experience, investors learn to improve their performance during contest backtest periods as

well as the live trading periods. This suggests that investors do make use of the historical

data. We provide an empirical framework to distinguish between this “in-sample” learning and

“out-of-sample” learning – a distinction that has not yet been addressed in the literature.

Our main results are on how investor performance outcomes are affected when their com-

mon dataset widens. We find that making additional predictive variables available to investors
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is associated with a narrowing/decrease of the dispersions of her performance outcomes; this is

consistent with learning models where an investor’s posterior predictive variance narrows with

additional information, rather than models where additional information leads an investor to

explore among a wider set of candidate models. As for the levels of the performance outcomes

(that investors seek to maximize), we find that experienced investors attain better performance

outcomes, suggesting that they make use of the additional predictive signals that are available

to them to better attain their objectives.

The performance outcomes of inexperienced investors do not change in a statistically sig-

nificant manner, and we rationalise this finding by a fear of model uncertainty. We formulate a

model where an investor aims to maximize her next-period performance by robustly learning

the expected returns of the futures contracts in her investment universe from a dataset of his-

torical signals and expected returns of similar historical futures contracts. A fear of worst-case

model uncertainty leads the investor to “shrink” the parameter values that she learns based

on the value of her subjective uncertainty parameter: the higher this threshold, the more

predictive signals that may be discarded entirely. Therefore, an investor can make use of the

historical data that is available to her while still choosing to ignore some subset of the available

predictive signals, and the more she fears model uncertainty the more signals she will ignore.

Excluding signals with predictive power may therefore hold her back from attaining her desired

risk preferences: fear of model uncertainty when relying on historical data may work against

the investor’s ultimate goal. Furthermore, an investor who gains in experience may fear model

uncertainty less, which can explain our findings on learning with experience. We provide

supporting evidence for this mechanism by focussing on performance outcomes in the periods

that immediately follow the release of macroeconomic signals to the trading platform.

The remainder of the paper is organised as follows. We first review the related literature

and our study’s contributions. In Section 2 we use a simple example to motivate how investors

may learn using historical data, and formulate our testable empirical hypotheses. Section 3

gives more detail on our institutional setting and Section 4 describes our data. We present

our empirical findings in Section 5. In Section 6 we explain our main empirical finding

by developing a model of an investor who solves her portfolio choice problem using robust

learning. Section 7 concludes.

Related literature

A recent line of research analyses the implications of data growth for financial markets, fo-

cussing on equilibrium outcomes (Farboodi and Veldkamp, 2020; Dugast and Foucault, 2020).

We study this topic empirically, focussing on the behavior of individual investors.
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Wedevelop empirical hypotheses that build on two distinct approaches tomodelling investor

learning. The first approach in the literature is Bayesian updating, and this can be extended

to incorporate parameter learning (Brennan, 1998; Barberis, 2000; Pástor and Veronesi, 2003,

2009), behavioral deviations like overconfidence (Gervais and Odean, 2001; Daniel et al., 2001)

and robustness (Maenhout, 2004; Hansen and Sargent, 2008). An alternative approach to

modelling learning is for the agent itself to select or alternate among various models (Hong

et al., 2007; Barberis et al., 1998; Branch and Evans, 2010; Arthur et al., 1996), perhaps trading

off between exploring new models against exploiting existing ones (Erev and Roth, 1998;

Camerer and Ho, 1999). One of our empirical hypotheses seeks to discriminate between these

approaches by testing whether systematic investors’ performance outcomes widen or narrow

at an individual level when additional signals are available to them.

Our study investigates how investors use a historical dataset to attain their objectives, so a

particularly relevant approach is to model agents as econometricians – to borrow an analogy

from Sargent (1993, pp. 21-23). The Bayesian models of Timmermann (1993) and Martin

and Nagel (2019) may also be seen as belonging to this category. Martin and Nagel (2019)

considered a risk-neutral agent that learns a model to predict asset payoffs based on historical

data; we similarly model an agent that learns how to predict expected returns to attain its

risk preferences. To do this, we lean on results at the intersection of the machine learning

& optimisation literatures (Xu et al., 2010; Tibshirani, 1996) without assuming that investors

make use of these techniques themselves. Gabaix (2014), Croce et al. (2015) and Molavi et al.

(2021) modelled bounded rationality using notions of sparsity; we also model agents as ignoring

a subset of their environment, but stemming from a different micro-foundation of robustness

to model uncertainty. In a different setting, Hanna et al. (2014) found empirical evidence that

agents may ignore some available data while learning.

Our study of investor learning and information is chiefly empirical in nature. A recurrent

theme in empirical studies of information has been the challenge of quantifying just what

“information” is. Fang and Peress (2009) were able to study information production and flows

by measuring newsmedia coverage: such public information might be assumed to belong to

the common part of investors’ information sets. In general, though, measuring precisely what

is in investors’ information sets is difficult and so prior work has relied on indirect measures:

for example, Hong et al. (2007) reasoned about changes in information sets based on changes

in covariances of observable variables, Kacperczyk and Seru (2007) did so using regression R2s,

and Biais et al. (2010) proxied for investors’ information possession by their realized profits.

More recently, Chen et al. (2020) used exogenous changes in analyst coverage as “shocks to [the]

information environment”, while Cookson and Niessner (2020) condition on investors’ trading

styles to identify the component of their disagreement that is due to differing information sets.
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By contrast, our institutional setting precisely controls the common information sets (including

historical data) that investors make their trading decisions based upon, as well as their trading

styles and other potential confounders.

It has long been accepted in economics that performance outcomes may improve with

experience thanks to a “learning by doing” channel (Arrow, 1962). A number of finance

studies have tackled the question of whether and how investors learn with experience by

examining individual trading records: Nicolosi et al. (2009) used the same panel of US discount

brokerage customers as Barber and Odean (2000) did, and found that investors’ risk-adjusted

returns and some measures of trading quality improve with a proxy for investor experience.

Seru et al. (2010) used a Finnish panel of individual trading records to study how investors

learn over time, seeking especially to disentangle the “learning by trading” channel from

investor participation/attrition effects, and argued that the second channel wasmore important.

Linnainmaa (2011) also sought to model selection, using a structural model of investors’ beliefs

and abilities with a panel of Finnish trading records, and arrived at a different conclusion: that

estimates of investor performance may be downward biased, since investors are more likely to

cease participation after a poor run of performance. Barber et al. (2020) argued that the notion

of overconfidence is necessary to fully explain speculative trading. Like these studies, we are

able to proxy for investor experience; furthermore, we can exactly measure (rather than proxy)

investors’ performance outcomes. We also more accurately identify learning effects because

other potential confounders (preferences, information, trading horizons) are controlled for

by our institutional setting. Importantly, we are able to go further than studying experience

effects to also study (i) whether investors learn from historical data and (ii) how the addition

of predictive signals affects their performance outcomes and hence their learning processes.

As well as information and learning, our study relates to the growing literature on the

effects of individuals’ beliefs on their financial decisions, as surveyed by Gomes et al. (2020).

Giglio et al. (2021) provide evidence that investor beliefs affect their portfolio choices. In our

setting, investors must form expectations on the first and second moments of asset returns in

order to choose their portfolios, and we are able to observe ex post realizations of these.

Our study contributes to the literature on systematic trading, which has hitherto focussed

on mutual funds (Abis, 2017) and hedge funds (Fung and Hsieh, 1997; Fabozzi et al., 2008;

Khandani and Lo, 2011; Bhardwaj et al., 2014). Rather than studying funds’ performance or

characteristics, or their managers’ incentives, we focus on the role of the individual humans

who design systematic trading strategies, and how they learn to attain their objectives.

We join other studies that have sourced data from FinTech platforms in order to gain insights

into economic questions: for example, Da et al. (2020) used crowd-sourced rank predictions

of stock price dynamics collected by a FinTech platform that ran prediction contests to find
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evidence of extrapolative beliefs; Tang (2019) made use of data from peer-to-peer lending

platforms. To our knowledge, the only paper to make use of trading contest data from a

(now defunct) FinTech platform is by Wiecki et al. (2016). Outside the finance literature, such

platforms have been the subject of business school case studies (Fleiss et al., 2017; Zheng, 2017).

2 Empirical framework

2.1 Motivation

In this study, we aim to use our unique setting to cleanly identify certain stylised facts about

investor learning that should be particularly relevant to a Big Data world. In particular, our

setting will allow us to distinguish between investor outcomes where the investors’ datasets

widen rather than simply lengthen.

It will be useful to have an empirical framework in mind when approaching our econometric

analysis, yet in our literature review we saw that a wide array of different approaches have

been taken to model investor learning. What can we say without imposing a particular learning

model on investors? In our institutional setting, investors all aim to maximize the Sharpe

Ratio of their portfolios during the “live” period that the trading contest is active, so their

common objective can be analysed by appealing to the single-period mean-variance framework

of Markowitz (1952). In fact, there is a direct analytical link between the solutions of the

Sharpe Ratio maximization problem and of the mean-variance portfolio choice problem;3 for

our present purposes we simply note that the investor needs to know the first two moments of

the returns of her tradable assets to attain her objective.

Simplifying to the case of a single asset, let us consider that an investor at time t has

observed a realisation rt of the asset’s random return r̃t . As we just discussed, she requires

knowledge of the mean and variance of the next-period return r̃t+1 in order to attain her

objective. Simplifying a little further by assuming that the variance v is known and constant,

the investor’s problem reduces to learning the mean of the next-period return. We can model

this unknown mean as a random variable itself,

µ̃t+1 = µ+ ε̃t+1, (1)

where ε̃t+1 is a zero-mean i.i.d. innovation and µ is an unknown parameter. The investor’s

learning problem is to estimate this unknown mean based on whatever information she has

3Under relatively mild assumptions on feasible portfolios and constraint sets, the solution to the Sharpe Ratio
maximization problem is simply the tangency portfolio solution to the classical Markowitz (1952) mean-variance
portfolio choice problem (Cornuéjols et al., 2018, pp. 102-103).
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available, including historical data. In learning µ̃t+1 = µ + ε̃t+1, the investor is interested in

learning both components.

Based on a historical dataset of observed realisations (in this case, the single realisation rt)

and the known parameter v, the investor can learn the unknown parameter µ. This would

result in good estimates of the mean of the unknown return µ̃t (of which a single realisation

was observed) and an apparently good historical performance of her portfolio choice based on

her historical sample at time t. We will think of this as in-sample learning.

The investor’s ultimate goal is for her portfolio to perform well tomorrow (t + 1), outside

the historical sample of observed realisations. For this, the investor should not only attempt to

learn the unknown parameter µ in this setting but also the random disturbance ε̃t+1 that is set

to occur tomorrow. Given some additional signal(s) to this disturbance, the investor can thus

obtain a better estimate of µ̃t+1 overall. We will think of this as out-of-sample learning.

A unique feature of our contest dataset is that it reports the Sharpe Ratios (SRs) of con-

testants’ entries on both the in-sample/backtest period (which contestants are also aware of)

and the out-of-sample/live period (which contestants do not know at the time they develop

and submit their systematic trading strategies, since these outcomes are calculated months

later). We can thus empirically study both learning channels: studying in-sample (backtest

period) SRs enables us to make inferences about investors’ in-sample learning mechanisms, and

studying out-of-sample (live period) SRs allows us to reason about their out-of-sample learning

mechanisms.

2.2 Hypothesis development

We now develop a number of hypotheses to be tested empirically that are consistent with prior

work and yet do not impose a particular learning model.

An individual investor’s learning mechanisms are inherently unobservable, but we do ob-

serve the outcome that the investors in our panel are optimising for. Furthermore, we control

for differences in horizons, preferences and information (thanks to our setting) and can also

control for time effects and time-invariant individual effects (econometrically or by incorporat-

ing a relevant benchmark portfolio). With all these controls in force, therefore, if we observe

an improvement in investor outcomes we may attribute it to learning. Based on the empirical

evidence of Nicolosi et al. (2009), Seru et al. (2010), Linnainmaa (2011) and Barber et al.

(2020), investor outcomes should improve with experience:

Hypothesis H1. The learning outcome (out-of-sample performance) improves with experience.

Barber et al. (2020) argued that investor learning and overconfidence mechanisms are

jointly in play. In our setting, the measure of past relative performance is clear so we can also
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test for an overconfidence mechanism:

Hypothesis H2. The improved out-of-sample performance with experience of H1 is attenuated by

overconfidence based on past relative performance.

In section 2.1 we highlighted the complementary channels of in- and out-of-sample learning.

We believe these mechanisms are also applicable to systematic investors in other settings and

(more generally) to any class of investors who commit to engaging in trading activity based on

ex ante forecasts or beliefs that are not revised over some period. This may include professional

investors who are constrained by an institutional mandate to follow particular styles of trading

or even trading rules. We therefore seek to disentangle which of these channels are at play,

and present the following dual hypotheses:

Hypothesis H3 (dual). The improvements in out-of-sample performance with experience of H1

can be explained by a combination of the following:

a improved in-sample performance.

b improved generalisability of the in-sample performance to the out-of-sample environment.

We now consider the important question of how investors learn in the presence of additional

predictive signals. Our reasoning here is straightforward: utility-maximizing investors should

make use of all available information in pursuit of their goal. As more information is added,

therefore, we expect the levels of whatever objective they are maximizing to then increase. In

our setting, this is the out-of-sample Sharpe Ratio:

Hypothesis H4. When new variables are made available, out-of-sample performance increases.

In order to maximize their out-of-sample performance outcomes, investors must form ex-

pectations on these future outcomes. In studying how investors learn, therefore, we are also

interested in the nature of these expectations (or forecasts) that they form. Well-specified,

unbiased statistical learning rules should converge to the truth as more information is pro-

cessed. Bayesian learning rules, in particular, should produce forecasts that increase in their

posterior precision. Investors who make use of such rules should therefore see the dispersions

of their out-of-sample performance outcomes narrow at an individual investor level. On the

other hand, investors may view the availability of a wider dataset as an opportunity to explore a

more diverse set of strategies that produce very different results out-of-sample, thereby increas-

ing the dispersion of their outcomes at an individual level. By taking the realized dispersion

of an investor’s out-of-sample performance outcomes to be a proxy for the dispersion of her

forecasts, we may thus gain some insight into what (unobservable) learning or forecasting rules

an investor actually uses. We therefore present the following alternating hypotheses:
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Hypothesis H5 (alternating). When new variables are made available, individual-level disper-

sions of investor outcomes either

a increase.

b decrease.

We can distinguish between individual-level dispersions (above) and aggregate-level dis-

persions of investors’ performance outcomes. Dugast and Foucault (2020) build a search model

to characterise the equilibrium effects of “data abundance”. One of that paper’s empirical

predictions is that, when investors have a common level of risk aversion, the dispersions of

their skills are equivalent to the dispersions of the qualities of the predictors that they draw

from their searches, and that this dispersion may increase with data abundance. Taking the

aggregate-level dispersion of investors’ performance outcomes as a proxy leads us to the fol-

lowing hypothesis:

Hypothesis H6. When new variables are made available, aggregate-level dispersions of investor

outcomes increase.

3 Institutional setting

Systematic trading4 involves designing and then implementing an algorithm that takes positions

in various financial assets based upon a trading strategy that its (human) designers have

specified at the outset. It has traditionally been associated with statistical arbitrage hedge

funds (who buy and short portfolios of stocks) and so-called “Commodity Trading Advisors”

(who trade futures contracts and other derivatives).

Quantiacs is a FinTech platform that runs trading contests for retail investors with the skills

to implement a systematic trading strategy. Contestants upload code (in Matlab or Python) to

implement a strategy that takes long or short positions in futures contracts, and each strategy’s

performance is assessed based on its in-sample (“backtest”) Sharpe Ratio prior to the start of the

contest, and its out-of-sample (“live”) Sharpe Ratio during the contest period. The official scores

assigned to entries incorporate the out-of-sample Sharpe Ratio, and so this incentivises traders

to perform well out-of-sample. In-sample performance is determined from historical daily data

and this is visible to traders as they backtest and fine-tune their strategy ahead of a contest

launch. The Sharpe Ratios reported by the trading platform include the effect of simulated

transaction costs, which the investors also perceive. Out-of-sample performance is based upon

market data that arrives after the launch of a contest; i.e. during the Live period, and at this

4We use the terms “systematic trading” and “systematic investing” interchangeably. Other studies may also
use the terms “algorithmic”, “automated” or “quantitative” trading or investing.
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point contestants are unable to modify their trading strategy in any way whatsoever. The

trading strategy can continue to update portfolio positions at a daily frequency. The distinction

between the Backtest and Live periods for a single contest is illustrated in Figure 2. The Live

period of each contest lasts for approximately 3 months, and the 12 contests in our panel thus

cover a number of years in out-of-sample/live calendar time.

[Insert Figure 2 about here]

To make the institutional setting more concrete, screenshots of the Quantiacs platform are

used in Appendix A to illustrate the steps taken by an investor to code up, backtest and then

submit a trading strategy entry to a contest.

Importantly, systematic trading strategies can only access a limited set of data inputs

throughout their lifetime (both in- and out-of-sample) and this set of available predictive

signals does not change over the lifetime of a contest. In fact, it has only widened once in

between contests, and this event will be used to test two of our hypotheses.

The event in question is the addition of macroeconomic variables to investors’ historical and

live trading datasets after the end of the 7th contest and before the beginning of the 8th contest.

These additional variables are listed in Appendix B. Out of a total of 12 contests, investors in

the first 7 therefore had “narrower” datasets than investors in the final 5. It is possible for an

investor to enter any contest that she pleases, and there is no entry fee. Contest live periods

are non-overlapping.

We are able to observe individual investors’ performance outcomes at an individual trading

strategy level. For confidentiality reasons, we are unable to observe the positions taken by trad-

ing strategies, or the code used to implement them. The platform does not require contestants

to provide demographic information or identifying characteristics.

4 Data

4.1 Contest leaderboard panel

Our sample consists of 12 trading contests5 spanning a number of years. We can identify

individual traders who may (and often do) take part in multiple contests over time in order to

study learning dynamics. We can also exploit the panel structure of the leaderboard dataset to

incorporate fixed effects in our analyses.

5Our sample does not include the first contest ever run by the platform because investors were asked to
systematically trade US equities instead of futures contracts, making it inconsistent with all other contests. Our
sample also excludes a very recent contest (named “Q13”) because the available data does not report the negative
out-of-sample Sharpe Ratios: using such censored data would lead to biased conclusions.
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Table 1 displays some key characteristics of the 12 contests in our sample. Figure 3 visualises

the distributions of Sharpe Ratios, conditioning only on the contest index.

[Insert Table 1 about here]

[Insert Figure 3 about here]

Figure 4 shows that a high proportion of contestants in each contest are first-time partic-

ipants and that, furthermore, many participate only once. The latter fact is consistent with

the prior literature and intuition discussed by Linnainmaa (2011). One important inference we

can make from this chart is that investors do not appear to be noticeably more or less willing

to participate in contests just before or after the new predictive variables were introduced in

between contests 7 & 8.

[Insert Figure 4 about here]

While demographic data on the individual traders is not available, we can use their par-

ticipation attributes to verify that the populations of investors are well-balanced across groups

of investors with access to different sets of predictive variables. Table 2 displays the means

of these contestant-level attributes, comparing the attributes of contestants who participated

only before the additional predictive variables were made available, against the attributes of

the contestants who participated only afterwards. The two contestant-level participation at-

tributes represent a contestant’s experience level, and a contestant’s relative ranking in the

previous contest he/she took part in (for contestants who participate in multiple contests).

The differences are not statistically different to zero (even at a low significance level of, say,

90%). These groups will be used in a later analysis.

[Insert Table 2 about here]

Similarly, Table 3 compares contest-level attributes before and after the additional predictive

variables were made available to investors. The three contest-level participation attributes

represent the average level of experience of contestants per contest, the fraction of first-time

participants, and the fraction of last-time participants. The relevant differences are also not

statistically different to zero (including at low significance levels such as 90%).

[Insert Table 3 about here]
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4.2 Macroeconomic announcement dates

Recall that the additional set of predictive signals added to the platform in between contests

consists solely of macroeconomic variables (see Appendix B for the full listing). We are able

to identify exactly which date each macroeconomic variable release was made available on the

platform (for both backtesting & live trading periods); in fact, we can identify exactly which

trading date return is the first to incorporate the information contained in each announce-

ment, thanks to the controlled information set that the platform makes available to all trading

strategies. We can use this to compare performance outcomes for the periods that immediately

follow new releases of the additional predictive signals (i.e. macroeconomic releases) to the

trading platform during the later trading contests.

4.3 Timeseries of daily returns for trading strategies

Our analysis will mostly rely on the comprehensive contest leaderboard panel that we have just

described. We will also supplement it by exploiting a related dataset: timeseries of the daily

returns of trading strategies during the live/out-of-sample trading periods of each contest. We

can thus calculate some additional performance metrics for contestants’ entries, in addition to

the reported Sharpe Ratios on the leaderboard panel.

The limitation of this dataset is that a number of trading strategies from the contest leader-

board panel could not be matched to their corresponding timeseries of daily returns: 19% of

the entries in our contest leaderboard panel could not be matched to return timeseries.

4.4 Futures contract prices for a benchmark portfolio

The trading platform provided contestants with historical daily market data for 88 futures (cov-

ering the backtest period) with which to formulate their trading strategies. These futures are

listed in Appendix C. The platform used the same market data to compute in-sample/backtest

Sharpe Ratios. Then, during the live period of each contest, the platform extended the time-

series of daily futures prices with the additional (actual) daily market data from the live period

and fed them in as inputs to the systematic trading strategies running on the platform.

We have downloaded historical price data for the same universe of 88 futures, with the

exception of Russell 2000 index futures, for which we simply used the index level.6 We sourced

6We used the Russell 2000 index itself to proxy for the series of Russell 2000 index futures contracts because
we were unable to source and combine price data for these futures contracts: the Russell 2000 index future
has changed its listing multiple times between the ICE and CME exchanges and we do not have access to older
historical data. We judged it more useful for our benchmark to possess a long timeseries of the underlying index
over the full backtest and live periods. The downside is that the absence of the “basis” between the derivative
price and underlying price means that contango/backwardation effects will be omitted, but we expect these to be
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the data from Bloomberg, stitching together multiple actively-traded futures contracts with a

(standard) difference adjustment.

We did so in order to construct a benchmark portfolio that we will use to compare contes-

tants’ performance outcomes against, in order to enable valid comparisons between contestants

at different time periods in situations where panel fixed effects cannot be used.

The trading platform does not formally judge contestants against a benchmark, though it

does provide each contestant with an example systematic trading strategy that takes equally-

weighted long positions in each of the 88 futures contracts available on the platform. Bench-

mark indices exist for certain sectors – such as the 24-contract Goldman Sachs Commodity Index

(GSCI) – but we are not aware of any benchmark for futures as an overall asset class. We have

therefore elected to construct the benchmark as simply as possible, based on daily-rebalanced

equally-weighted returns of long positions in the most-active contracts of the underlying 88

futures (or, in the special case of the Russell 2000 index, the future’s underlying index itself).

The use of long-only positions (similar to the GSCI commodity index methodology) is justified

because the buyers of futures contracts receive delivery of the underlying physical/cash asset

at maturity. The use of equally-weighted positions is justified by the absence of any alternative

for weighting derivatives in such diverse underlying assets: unlike stocks or bonds, there is no

fixed supply that limits the open interest that is possible in futures contracts.

5 Results

We now test our empirical hypotheses. The specifications in this section take investor outcomes

to be their best out-of-sample Sharpe Ratios (SRs). (Appendix D.1 checks that our conclusions

are robust to more complex functional forms and Appendix D.2 checks that they are robust to

using the platform’s official score rather than the out-of-sample Sharpe Ratios.)

5.1 Learning with experience

We first consider how investors learn as they gain in experience (by participating in more

trading contests).

[Insert Table 4 about here]

Table 4 displays the results of regressing performance outcomes against the experience
levels of the contestants. Performance outcomes are either the in-sample (backtest period)
best Sharpe Ratios or the out-of-sample (live period) best Sharpe Ratios of the contestants i for

negligible on the most-active contract of a non-commodity future, as we have here.
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each contest period t. A trader’s experience is measured by the number7 of contests she has
participated in so far. The full panel specifications

SRBest
i,t = β ×Contests experiencedi,t +λi +δt + εi,t (2)

include individual (contestant) fixed effects λi and time (contest) fixed effects δt: controlling

for these two dimensions of unobserved heterogeneity should enable us to draw more accurate

conclusions. In both OLS & panel specifications, the positive (and significantly non-zero)

coefficient β on the number of contests so far is evidence for investor learning with experience.8

The outcome variable in columns (3)-(4) is the live/out-of-sample performance outcome, so the

positive estimates for β in those columns support our first hypothesis H1 and confirm previous

studies that find a learning with experience effect, such as Nicolosi et al. (2009) or Seru

et al. (2010). The outcome variable in columns (1)-(2) is the backtest/in-sample performance

outcome, so the positive estimates for β in those columns suggest that investors make use of

the historical data that is available to them, since the counterfactual performances of their

trading strategy entries on historical data improve concurrently.

[Insert Table 5 about here]

Given our ability to separately identify in-sample vs. out-of-sample performance outcomes,
the next step of our analysis is to further study the relationship between these two outcomes.
The regression results in Table 5 are variants of the following specification:

Live SRBest
i,t = β1 ×Contests experiencedi,t + β2 × Backtest SRBest

i,t + β3 × Log Percentile(ScoreBest
i,t−1)

+ β4 ×Contests experiencedi,t × Backtest SRBest
i,t +λi +δt + εi,t . (3)

Throughout, the dependent variable is the live/out-of-sample performance outcome, and the

backtest/in-sample performance variable now appears as a covariate on the right-hand-side

of the specification. The small positive estimates for this term’s coefficient β2 indicate that

improved out-of-sample performance is associated with improved in-sample performance. Fur-

thermore, the magnitude of the coefficient β2 is less than one, indicating that performance de-

teriorates out-of-sample, which agrees with intuition. When both individual and time-invariant

heterogeneity are controlled for by fixed effects in column (8), the coefficient estimate is sta-

tistically significant. Column (8) also introduces a covariate for the prior relative performance

7Results are robust to the use of experience dummies rather than an integer variable: see Appendix D.1.
8Note that this channel of learning with experience is distinct from a statistical effect of using additional

samples to form more accurate forecasts: while the number of contests a single investor participates in does
increase with calendar time (i.e. length of historical samples), investors with equal levels of experience may have
participated in different contests with different lengths of historical datasets available at the time the contests
occurred.

15



measured by the (log) percentile of the official score that the investor’s best previous entry

had attained in the prior contest she participated in; the negative coefficient β3 on this term

is evidence for an overconfidence effect that acts counter to the main effect of learning with

experience. This result supports H2 and is consistent with the argument of Barber et al. (2020).

Returning to our dual hypotheses on the drivers of the learning with experience effect, the

panel regression in column (9) in Table 5 introduces an interaction term between the highest

in-sample SR and the experience variable: the lack of statistical significance on the coefficient

of this interaction term β4 indicates that learning with experience effects do not consist of an

improvement in the ability of an in-sample performance figure to be generalised to the out-

of-sample period (which would have manifested in a positive and significant coefficient). In

other words, the improved out-of-sample performance outcomes that we noted previously are

actually driven by improved in-sample performance. We conclude that an absence of improved

generalisability suggests that it is in-sample learning (H3a) that underpins the positive effect

of experience on investor outcomes and not a generalisation effect (H3b).

[Insert Table 6 about here]

Investors are able to submit multiple systematic trading strategies as entries to a contest, so
we now study the determinants of this behavior using Poisson GLM regressions that take the
number of entered strategies as the dependent variable, with the following form:

Entriesi,t ∼ Poisson
�

exp
�

β1 ×Contests experiencedi,t + β2 × Live SRBest
i,t

+ β3 × Log Percentile(ScoreBest
i,t−1) + β ×Contestantst

	

�

. (4)

Regression results are displayed in Table 6. The positive estimates for β1,β2 indicate that

submitting more entries in a contest is positively associated with both experience and an

improved out-of-sample performance outcome. The positive estimates for β2 may be due to

this term capturing individual skill in the absence of fixed effects and it does not reduce the

magnitude of the main effect. As for the overconfidence channel, it is unclear a priori whether

the overconfidence effect would be associated with more entries (similar to the overtrading

effects documented in the literature) or with fewer (since more entries in this situation are

associated with better performance): the positive estimate for β3 appears to favour the former

explanation. The insignificant and near-zero estimate for β4 may be evidence for the absence

of any strategic effects during the current contests: investors neither enter more strategies nor

fewer depending on how many other contestants are taking part.

The evidence so far supports H1, H2 and H3a. We now examine the robustness of these

results to a possible selection bias between the number of contests and the performance out-

comes: since we observe attrition in our panel of investors, it is important to consider this
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issue. Unlike Seru et al. (2010) and Linnainmaa (2011), modelling participation and selec-

tion is not a primary object of our study, but it will be important for us to have confidence

in our results to understand what direction any bias might introduce to our specifications.

We therefore re-estimate the magnitude of learning with experience effects using a Heckman

(1976)-type model, with standard errors computed according to Greene (1981). The first stage

of the procedure is a probit model of the participation of our contestants in the next contest,

and this is explicitly based upon a number of covariates that we specify. We argue that two

of the covariates that we make use of in the first-stage selection equation satisfy an exclusion

restriction: the mean of the Google Search Index for “Quantopian”9 and the relative number of

entries that the contestant has made in the prior contest compared to the current contest.

[Insert Table 7 about here]

The first-stage coefficients are shown in the top section of Table 7, and the estimates indicate

that contestants are less likely to participate in the next contest as they gain in experience and

as the rival trading platform (Quantopian) gains in attention, and are more likely to participate

once more if they have participated more intensively in the prior contest or ranked relatively

higher in the prior contest. The second-stage coefficients represent our outcome equation of

interest, and these are shown in the middle section of Table 7. The coefficient on contests so

far is positive in 3 of the 4 specifications we estimate. More importantly, the estimates of the ρ

parameter in the second stage of the Heckman (1976) model are all negative, and therefore so

are the coefficients on the Inverse Mills Ratio shown in the line below. (Note that the statistical

significance actually improves in the robustness checks in Appendix D.2). The estimated sign

on ρ therefore indicates the presence of negative selection in an OLS estimate of the magnitude

of the effect of learning with experience. To put it another way, uncorrected OLS estimates of

the magnitude of the learning effect would be biased downwards. This result is in agreement

with the intuition of Linnainmaa (2011) and should reassure us that our earlier findings on

learning with experience are not in fact driven by selection/attrition bias (or, as Seru et al.

(2010) framed it, an investor learning about her type).

9Quantopian was one of Quantiacs’ rival FinTech platforms for running trading contests (Fleiss et al., 2017;
Zheng, 2017). The logic of our exclusion restriction is that the contestants on each platform may exhibit substi-
tutability in which platform they participate in. It seems implausible to argue that search interest in and attention
to a rival platform (Quantopian) could affect performance outcomes in our focal setting (Quantiacs) through
any channel other than an effect on participation. Note that the rival Quantopian platform is now defunct (as
announced on 29 October 2020) but was active throughout our sample period.
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5.2 Learning with additional predictive variables

To sum up our analysis so far, we first revisited some effects that have been previously studied:

learning with experience, the direction of selection bias, and the presence of overconfidence.

We then provided some novel insights into the dual channels of in-sample and out-of-sample

learning. We now turn to our primary concern: identifying what effects the availability of a

wider dataset has on investor learning.

To cleanly identify the effects of investor learning, we divide contestants into Treatment

& Control groups. Investors in the Control group have only participated in contests before

the introduction of the additional macroeconomic variables to the Quantiacs platform, and

investors in the Treatment group have only ever participated after their inclusion. Recall that

we already verified in Section 4.1 that these two groups are well-balanced in terms of observable

characteristics. To identify the effects of the additional predictive variables, we must assume

that any changes to investors’ learning dynamics is attributable to them having access to these

additional predictive variables.

5.2.1 Effect on levels of performance outcomes

[Insert Table 8 about here]

The regressions in Table 8 analyze the relationship between investor experience and the
availability of additional predictive signals (as covariates) and the out-of-sample performance
outcomes (as the response), using variants of the following specification:

Live SRBest
i,t − Benchmark SRt

= β1 +
4
∑

k=2

�

βk ×1{Contests experiencedi,t = k}
�

+ γ1 ×1{New variables availablet}

+
4
∑

k=2

�

γk ×1{Contests experiencedi,t = k} ×1{New variables availablet}
�

+ εi,t . (5)

The dummy variable named 1{New variables availablet}10 indicates whether investors com-

pete after the introduction of the additional predictive variables to the common parts of in-

vestors’ information sets (i.e. whether investors belong to the Treatment group). In columns

(3) & (6) this treatment dummy is interacted with dummies for investor experience to capture

the effects of the availability of the new predictive variables on the performance outcomes of

investors with comparable levels of experience between groups (γk − βk).

10Note that since contestants are divided into two groups, we cannot identify individual-level fixed effects.
Similarly, since the dummy for the availability of new predictors is time-invariant on a per-contest level, we can
no longer identify contest-level fixed effects either. This leads us to use a benchmark portfolio instead.
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The specifications in columns (1)-(3) simply take the out-of-sample SR to be the response

variable. The remaining columns (4)-(6) adjust these performance outcomes by taking the

excess of the out-of-sample SR over the SR fromholding the benchmark index (equally-weighted

buy-and-hold positions in contestants’ tradeable universe of futures contracts) in order to permit

valid comparisons across time periods. When the benchmark is taken into account in this way

in column (6), we can see that the interactions between the dummy variable for treatment and

dummies for investor experience have positive (and significantly non-zero) coefficients γk for

higher levels of experience k ≥ 3, in particular. The availability of wider data is thus associated

with a steepening of investors’ performance outcomes. In other words, we find evidence that

more experienced investors make use of the additional predictive variables to better attain

their objectives: our panel of investor outcomes supports H4 for investors with higher levels of

experience. This finding is a key empirical result.

[Insert Table 9 about here]

We now augment the previous specification (5) with two new covariates: the backtest/in-
sample SR, and its interaction with the treatment dummy. Table 9 displays the regression
results for variants of this new specification:

Live SRBest
i,t − Benchmark SRt = α+ β1 ×Contests experiencedi,t

+ β2 × Backtest SRBest
i,t + β3 ×1{New variables availablet}

+ β4 ×Contests experiencedi,t ×1{New variables availablet}

+ β5 × Backtest SRBest
i,t ×1{New variables availablet}+ εi,t . (6)

As in the previous table, columns (4)-(6) take the benchmark SR into account as an implicit

control. The estimated coefficients β5 on the interaction term between the in-sample SR and

treatment dummy are not significant, which indicates that the availability of the additional

predictive variables does not seem to affect the generalisability of in-sample performance to

the out-of-sample periods.

From studying the levels of the out-of-sample performance outcomes we can thus conclude

that experienced investors appear to better attain their objectives when the additional predictive

variables are available (H4). The availability of wider data has a beneficial effect that interacts

with an investor’s level of experience: we will rationalise this finding in Section 6.

5.2.2 Effect on the ex post realized moments of portfolio returns

An investor who seeks to maximize her out-of-sample portfolio Sharpe Ratio, as our contestants

do, is faced with the joint problem of maximizing the out-of-sample returns of the portfolio
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while minimizing their variance; this is due to the construction of the Sharpe Ratio statistic.

We observe timeseries of the daily returns of a subset of contestants’ portfolios during the live

period of each contest. Using these available timeseries, we thereby decompose the realized

Sharpe Ratios by estimating the mean and standard deviation of these contestants’ out-of-

sample portfolio daily returns. We then relate these to experience levels and the availability of

additional predictive variables, as before.

[Insert Table 10 about here]

We modify the main specification (5) by regressing the ex post estimated means of the
out-of-sample daily returns of trading strategies against interacted dummies for the availability
of additional predictive variables and investor experience levels:

Meani,t(Best Live entry daily returns)

= β1 +
3
∑

k=2

�

βk ×1{Contests experiencedi,t = k}
�

+ γ1 ×1{New variables availablet}

+
3
∑

k=2

�

γk ×1{Contests experiencedi,t = k} ×1{New variables availablet}
�

+ εi,t . (7)

Regression results are displayed in Table 10, with the dependent variable in columns (1)-(3)

constructed using raw returns, and the dependent variable in columns (4)-(6) adjusting for

the benchmark portfolio’s daily returns as an implicit control. Whether or not the benchmark

adjustment is applied, the availability of additional predictive variables is associated with

higher out-of-sample mean returns for more experienced investors, and the estimates for these

coefficients γk are significantly different to zero.

[Insert Table 11 about here]

A similar modification of the main specification (5) and previous specification (7) is to
regress the ex post estimated standard deviations of the out-of-sample daily returns of trading
strategies against interacted dummies for the availability of additional predictive variables and
investor experience levels:

SDi,t(Best Live entry daily returns)

= β1 +
3
∑

k=2

�

βk ×1{Contests experiencedi,t = k}
�

+ γ1 ×1{New variables availablet}

+
3
∑

k=2

�

γk ×1{Contests experiencedi,t = k} ×1{New variables availablet}
�

+ εi,t . (8)

20



Regression results are displayed in Table 11. As above, columns (1)-(3) use raw returns and

columns (4)-(6) adjust for the benchmark portfolio’s daily returns before estimating their

standard deviation, in order to implicitly control for differing contest time periods. Once

again, the conclusions do not depend on whether the benchmark adjustment is applied. While

the estimates for coefficients γk in columns (3) & (6) again agree with intuition, this time they

are mostly not significantly different to zero.

Our results indicate that the improvements in out-of-sample Sharpe Ratios (performance

outcomes) that we previously associated with the availability of additional predictive variables

(in Table 8, for example) can be attributed mainly to higher out-of-sample mean returns (Table

10). While we also detect lower out-of-sample standard deviations, these additional effects are

mostly statistically insignificant (Table 11).

5.2.3 Effect on individual-level dispersions of performance outcomes

We now return to our analysis of individual investors’ performance outcomes (out-of-sample

Sharpe Ratios). We have so far studied the locations/levels of these performance outcomes, yet

it is also important to study the dispersions of these outcomes, and how these dispersions relate

to the availability of additional predictive variables: evidence on whether these dispersions

widen or narrow with the availability of wider data is useful for understanding investors’

learning mechanisms. We exploit the fact that an investor i may (potentially) enter multiple

trading strategies j into a contest t, allowing us tomeasure individual investor-level dispersions.

[Insert Table 12 about here]

Table 12 displays regression results for specifications in which the response variables are
these individual-level dispersions of investor outcomes:

Rangei,t(SRi, j,t) = α+ β1 ×1{New variables availablet}+ β2 ×Contests experiencedi,t

+ β3 × Entriesi,t + β4 × Backtest SRMean
i,t + β5 × Live SRMean

i,t + εi,t (9)

Columns (1)-(4) use in-sample dispersions and columns (5)-(8) use out-of-sample disper-

sions. Crucially, the availability of additional predictive variables is associated with a de-

crease/narrowing in the individual-level dispersions of investors’ out-of-sample performance

outcomes, represented by the coefficient β1 in columns (5)-(8). The direction of the effect

is unchanged when controls are added in columns (7)-(8) for an investor’s experience, the

number of trading strategies entered into the contest or for the levels performance outcomes

themselves. The main effect β1 is statistically significantly different to zero when all controls

are included, in column (8).
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Therefore, the evidence supports H5b (narrower dispersions) rather than H5a (wider dis-

persions) for the out-of-sample performance outcomes. This is more consistent with models

of investor learning in which investors exploit additional data to make more precise forecasts

(such as Bayesian updating models) than with models in which investors explore a wider, more

diverse set of candidate models when additional data is available.

5.2.4 Effect on aggregate dispersions of performance outcomes

[Insert Table 13 about here]

The previous individual-level results do not carry through to dispersions of contest-level
aggregate outcomes, which we study using regressions of the following form:

SDt(SR
Best
i,t ) = α+ β1 ×1{New variables availablet}

+ β2 ×Meant(Contests experiencedi,t) + β3 ×Meant(Entriesi,t) + εt . (10)

Regression results are displayed in Table 13. The positive estimates for the coefficient β1 in

columns (1)-(2) indicate that the availability of additional predictive variables is associated

with an increase/widening in the aggregate dispersions of investors’ in-sample performance

outcomes. There is no statistically discernible effect for the aggregate dispersions of the out-

of-sample performance outcomes, in columns (3)-(4). Our conclusions are not affected by the

inclusion of contest-level controls in columns (2) & (4). These results partially support H6.

The model of Dugast and Foucault (2020) does not distinguish between in- and out-of-sample

performance outcomes; our in-sample results are consistent with their model’s predictions.

6 The value of additional predictive variables

Our empirical findings in Section 5.2.1 supported the hypothesis that investors would make

use of additional predictive variables in order to attain their goals (of maximizing their out-of-

sample Sharpe Ratios). Intriguingly, these statistically significant positive effects were detected

for investors with higher levels of experience, in particular. In this section we seek to rationalise

why these effects were not statistically significant for inexperienced investors.

In developing this hypothesis (H4) we made the assumption that investors would rationally

use all available information and that doing so would aid them in maximizing their objectives.

The performance outcomes for the more experienced investors did improve, suggesting that

the additional predictive variables could indeed be beneficially used for this purpose. Evidence
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from a 2019 survey11 also supports our intuition: 72% of investment firms stated they gained

value from alternative data.

A potential explanation is that the inexperienced investors did not make full use of the

historical data that was available to them. In the case of humans making decisions alone it

would seem reasonable to attribute this to bounded rationality or some cognitive constraint

on information processing capacity; however, the investors in our setting are required to

systematically process all available signals and generate trades using computer code, so this

may be less convincing.

We therefore propose the following explanation: it can be rational for decision-makers

to ignore a subset of available predictive signals when they wish to make decisions that are

robust to model uncertainty. This explanation is also compatible with a formal objective

that investors should maximize their out-of-sample Sharpe Ratios over a single period, as our

particular institutional setting requires. Furthermore, an investor whomore greatly fears model

uncertainty would use fewer predictive signals in attaining her objective, allowing us to link

fear of model uncertainty to inexperience.

We now formalise this theory in a model of portfolio choice with learning, taking inspiration

from Martin and Nagel (2019) and Hansen and Sargent (2008). We close this section by

providing some supporting empirical evidence on how the systematic investors in our setting

make use of additional predictive variables when they are made available.

6.1 Portfolio choice with learning

Since investors are incentivized by the contest setup to maximize their single-period out-of-

sample Sharpe Ratios, we can define an investor’s objective for a particular contest as

max
w

µT w
p

w TΣw
, (11)

that is, to maximize the Sharpe Ratio of a portfolio of weights w on all tradable futures contracts

given a vector µ of expected returns of those futures contracts and a variance-covariance matrix

Σ. There are no shorting constraints, and we omit any discussion of transaction costs. As we

mentioned in Section 2.1, the solution to (11) may coincide with the solution to the classical

Markowitz (1952) mean-variance portfolio choice problem, given some mild assumptions.

In reality, a learning problem arises because the moments of asset returns are not known.

To make progress, let us assume that Σ is known and so the investor must therefore estimate

11Greenwich Associates: “Demystifying Alternative Data”, Q2 2019, https://cdn.ihs.com/www/prot/
pdf/0519/Demystifying-Alternative-Data-FINAL.pdf
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the unknown parameter vector µ in order to achieve her objective.12

Considering just one of those futures contracts, the investor needs to estimate its unknown

expected return µ in order to solve her portfolio choice problem (and to repeat the exercise for

all other tradable futures contracts). She receives m signals s1, s2, . . . , sm that can be used to

form an estimate µ̂. We assume that she is aware of the true functional form of the relationship

and that it is some linear combination of the signal values,

µ=
m
∑

i=1

bisi = s b, (12)

collecting the signal values in a row vector s and linear coefficients in a column vector b.

Despite knowing the true functional form, the parameters b themselves are unknown to the

investor, so she must proceed by learning them based on the historical data of similar futures

contracts. Recall that all futures contracts mature at predefined dates; for example, there are

four S&P500 E-mini futures contracts traded on the CME that mature each year (at predefined

dates inMarch, June, September and December). Therefore an investor who wishes to estimate

the expected return µ of a specific futures contract before it matures can make use of historical

data for similar futures contracts that have matured in the past.

More formally, to learn these unknown parameters b, the investor collects t previous

realisations, each of which relates to the expected return v of some past futures contract and

the corresponding prior signals available s1, s2, . . . , sm at the time. Let us arrange these t sets

of historical samples in t-dimensional column vectors v and s1, s2, . . . , sm, respectively. For

convenience, define the t ×m data matrix S := [s1 s2 . . . sm]. Then the investor’s learning

problem is to determine the values of these unknown parameters based on the historical data

that she observes. Defining Err : R × R → [0,+∞) as some measure of error/deviance

between its scalar arguments, her objective during the learning process will be to minimize the

error/deviance between the observed historical expected returns v and her predictions based

on the historical signal values S:

min
b∈Rm

Err(v ,Sb) (13)

Minimizing the errors in the estimated expected returns (13) directly improves the investor’s

ability to attain her objective: in fact, Best and Grauer (1991) showed analytically that either

over- or under-estimating assets’ expected returns can lead to large increases in either the mean

or variance of the solution to the closely-related Markowitz (1952) portfolio choice problem.

12Empirically, it is well known that the first moment of asset returns is more difficult to estimate than the
second moment. Theoretically, an asset’s volatility can even be calculated exactly from continuously-observed
returns (Back, 2017, pp. 594). Merton (1980) discusses these empirical and theoretical considerations in detail.
Recall also that we made a similar assumption for the simple model in Section 2.1.
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In our setting, then, both over- and under-estimates of the expected returns may lead to sub-

optimal Sharpe Ratios. Knowing this, an investor who is learning to estimate expected returns

should seek out a functional form for the error/deviance function in (13) that penalises both

over- and under-estimates. This would aid her in pursuit of her ultimate objective: choosing a

portfolio that maximizes the out-of-sample Sharpe Ratio.

6.2 Robust learning under model uncertainty

In characterising the investor so far, we have seen that she has well-defined preferences relating

to Sharpe Ratio maximization, as required by our institutional setting. In the spirit of Sargent

(1993) and Martin and Nagel (2019), she also acts as an econometrician who must learn about

futures contracts’ expected returns from historical data of similar contracts that have matured

in the past. We now go further and consider what effects model uncertainty can have on her

learning mechanisms.

Recall that the investor is aware of the functional form of any specific futures contract’s

expected return (with only the exact parameter values b unknown to her) and has access to

a (potentially vast) set of historical signals and their realisations for similar futures contracts.

However, she is painfully aware that these historical data only apply to other assets, albeit

comparable ones, and is concerned at the validity of using these historical data to learn the

expected return relationship that is of interest to her. Setting up her learning problem (13)

requires a specification of how the investor deals with her problem of model uncertainty; we

now formulate it in a manner that explicitly captures her fear of model uncertainty while also

remaining tractable. In what follows, || · ||1 and || · ||2 denote the `1/taxicab and `2/Euclidean

norms of a vector, respectively.

Definition 6.1. A robust learner determines the unknown parameters b by considering the worst-

case error that may result for any given choice of parameter values,

min
b∈Rm

max
U∈U
||v − (S+U)b||2, (14)

where the model uncertainty can be interpreted as a matrix of signal-wise perturbations U that

maximizes the `2 norm-based error for any choice of b and is constrained by an uncertainty set

U :=
�

[u1 u2 . . . um] : ||u i||2 ≤ δi ∀ i = 1, . . . , m
	

(15)

that is characterised by a set of upper bounds δi ≥ 0 on the `2 norm of each possible signal-wise

disturbance u i.

25



Remark 6.2. Replacing the `2 norm in the objective (14) with a squared loss (to give a residual

sum of squares) would not affect our subsequent results, thanks to the monotonicity of x 7→ x2.

Definition 6.1 frames the investor’s robust learning problem as attempting to minimize the

worst-case prediction error while a malevolent opponent (Nature) conspires to maximize it up

to the constraints permitted by U . The higher the bounds δi, the worse the worst-case error

and the more conservative the learner (as will be explained shortly). This is similar to the

setup of a zero-sum game, or indeed the robust control setups of Hansen and Sargent (2008),

whose framing has inspired our own.

Proposition 6.3. A robust learner solves her original problem (14) by solving an equivalent

formulation

min
w∈Rm

||v − Sb||22 +λ||b||1, (16)

where λ≥ 0 is a scaling of δ :=maxi δi in (15).

Proof. Xu et al. (2010) Theorem 1 shows a direct equivalence between the objectives when the

cost function is the `2 norm, and Appendix A of that paper shows a further equivalence to our

squared-`2 norm formulation (16).

Assumption 6.4. Assume that the data matrix S is orthonormal: ST S = I .

The purpose of this assumption13 is to enable a closed-form solution to (16):

Proposition 6.5. Under Assumption 6.4, the solution to the robust decision-maker’s prediction

problem is to predict

bµ= sbb (17)

where s is an m-dimensional row vector consisting of the m predictive signals to the currently

traded asset’s expected return µ, and bb is an m-dimensional column vector of learned parameters

whose elements are defined by

bbk = sign(s T
k v)max

�

|s T
k v | −λ, 0

	

(18)

Proof. Due to Tibshirani (1996), starting from the formulation (16).

Remark 6.6. To interpret (18), note that s T
k v would simply be the parameter value that the

decision-maker would have learned if she had used OLS regression to solve her problem instead,

under Assumption 6.4.

13To see that this modelling assumption is quite innocuous, recall that Gram-Schmidt orthogonalization can
be applied to asset pricing factors to aid in their analysis: see Back (2017, pp. 142) for an example.
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Following on from Remark 6.6, let us study the functional form (18) for a moment: the

investor would learn parameter values bb that are “shrunken” in comparison to what they would

have been had she used OLS regression. This is an example of “soft-thresholding”, which we

illustrate in Figure 5.

[Insert Figure 5 about here]

Importantly, the robust learner now takes as zero any parameters bbk that empirically would

have seemed to be very small in value (≤ λ, to be precise) if she had used OLS regression,

thus effectively ignoring the corresponding signal sk when she estimates bµ. In other words,

the investor will ignore a signal sk if its historical predictive contributions |s T
k v | fall short of

a subjective threshold λ that captures the level of model uncertainty that she experiences.

Therefore, the higher her model uncertainty λ, the more predictive signals she will ignore.

Remark 6.7. By adding assumptions it is possible to view themodel from a probabilistic perspective:

Park and Casella (2008, Equation 3) write an equivalent Bayesian hierarchical model for the

robust learning problem (16). Furthermore, Hans (2009, Equation 5) derives a posterior predictive

distribution for bµ that is a Gaussian with a variance that is a nonlinear function of the new signals

s , the historical data (signals S & expected returns v) and the subjective parameter λ (indirectly).

It is worth clarifying just what our present model of robust learning can explain: it can

provide a clear rationale and intuition for why the investor may wish to ignore certain predictive

signals s based on historical data S & v and a subjective model uncertainty parameter λ.

Remark 6.7 points out that it does not provide testable predictions about the posterior predictive

variance of bµ due to its nonlinear dependence on historical data and the current signals, so

other parts of the investor’s learning mechanisms lie outside the scope of this formal analysis.

6.3 Consequences of robust learning

Our model of robust learning illustrates a potential tradeoff between an investor’s desire to

attain her risk preferences and her fear of model uncertainty due to a reliance on historical

data. The investor learns from historical data but also fears the model uncertainty that results

from her use of this historical data. As an important consequence, she may discard certain

signals with predictive power even though they are part of her information set.

Fear of model uncertainty may therefore explain why inexperienced investors in our setting

with access to additional predictive variables do not gain a statistically significant benefit in

terms of their objective (out-of-sample Sharpe Ratio maximization) when compared to other

inexperienced investors without access to those predictive signals. It may also explain whymore
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experienced investors do gain such a benefit when compared to other experienced investors.

We theorise that inexperienced investors who must learn from historical data may more greatly

fear model uncertainty (i.e. have a high subjective threshold λ) and so may discard some

predictive variables, leading them to fall short of attaining their risk preferences. Similarly,

more experienced investors may fear model uncertainty less (i.e. have a lower subjective

threshold λ) and therefore make use of more of the predictive signals that are available to

them, helping them to better attain their objective.

Holding fixed the number of predictive signals, our theory of how investors learn from

historical data may also explain our general finding that investors’ performance outcomes

improve with experience: as an investor gains in experience, she may fear model uncertainty

less (i.e. reduce her subjective threshold λ) and therefore incorporate more predictive signals

into her portfolio choice decision, which would help her attain a higher level of her objective.

Model uncertainty of this kind may also have implications for market efficiency: Proposition

6.5 and the subsequent discussion implies that any signal sk to the asset’s expected return may

not find its way into the price if the historical signals s k contributed to predicting (historical)

expected returns by an amount that falls below some investor-specific subjective model uncer-

tainty threshold. Of course, agents may be heterogenous in such a parameter and – outside

our present setting – may have access to private predictive signals. Still, such a model seems

worthy of more detailed study in the context of a wider analysis of market efficiency.14

Another consequence is that robust investors would make decisions based on biased ex-

pectations of returns, in a similar manner to the model of Martin and Nagel (2019), and this

may lead to some form of return predictability. Such biased expectations are not necessarily

irrational, as argued by Lim (2001) and normative theory15 in statistics and machine learning.

Finally, since our robust learner may choose to ignore certain predictive signals when

solving her portfolio choice problem, she is effectively maximizing her objective while adopting

a simplified and sparse model of the world. This is consistent with the (non-financial) empirical

evidence of Hanna et al. (2014). By employing the notion of sparsity, our model is also similar

to the behavioral models of Gabaix (2014), Croce et al. (2015) and Molavi et al. (2021), except

that we do not interpret our robust learners as being boundedly rational. Our model is also

loosely related to that of Schwartzstein (2014) and other models of inattention (Gabaix, 2019).

14One relevant example of studying the equilibrium consequences of trades between multiple agents who learn
from historical data is the paper by Balasubramanian and Yang (2020), in which individual agents face a similar
forecasting problem to that studied by Martin and Nagel (2019).

15Hastie et al. (2009) repeatedly discuss a bias-variance tradeoff: that trading off bias against variance aids in
making accurate predictions.
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6.4 Evidence on the usage of additional predictive variables

We now provide empirical evidence in support of the proposed mechanism. Our analysis

exploits the fact that all of the additional predictive variables that were suddenly made available

by the trading platform are lower-frequency macroeconomic variables, in contrast to the daily

market data signals. We match the daily returns of systematic investors’ trading strategies

to the exact trading dates at which new observations of the low-frequency macroeconomic

variables were made available as inputs to investors’ systematic trading strategies. We also

match them to the simulated daily returns of trading strategies that were entered into earlier

contests, when these variables were not actually available at the time, as a placebo.

Investors seek to maximize their trading strategy Sharpe Ratios using the data that is

available to them at the time. Therefore, we can reason about whether they make use of

macroeconomic predictive variables by examining their trading strategy performance outcomes

immediately following macroeconomic variable releases (to the platform). Relatively better

performance immediately following macroeconomic variable releases suggests that a trading

strategy is more likely to be making use of these new variables, as compared to another trading

strategy that performs relatively worse over the same short post-release period.

[Insert Table 14 about here]

We implement this analysis by conducting regressions of Sharpe Ratios16 computed from
trading strategy daily returns against interacted experience and macroeconomic data availabil-
ity dummies, with the following form:

Post-release SRi,t

= β1 +
3
∑

k=2

�

βk ×1{Contests experiencedi,t = k}
�

+ γ1 ×1{New variables availablet}

+
3
∑

k=2

�

γk ×1{Contests experiencedi,t = k} ×1{New variables availablet}
�

+ εi,t (19)

Regression results are displayed in Table 14. Each column focusses on a (non-overlapping) pe-

riod of 5 consecutive trading days following the addition of new observations of macroeconomic

signals to the trading platform: the SR in the first column is computed from the 5 trading days

immediately following macroeconomic releases, then the second column corresponds to the

16In this analysis, all trading strategy daily returns are in excess of matched benchmark index daily returns,
which is equivalent to computing the Sharpe Ratio of daily returns with our equally-weighted index portfolio
as the benchmark. Therefore, the riskless rate is ignored for simplicity, which is consistent with the Quantiacs
trading platform’s stated internal Sharpe Ratio calculation methodology. In unreported results, we repeated this
analysis incorporating a riskless rate (proxied by 3mo Treasury bill rates from FRED) in addition to the benchmark
index return, with no change to the qualitative pattern of regression coefficients.
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next 5 trading days, and so on. The most important coefficients are those in column (1) of Table

14, as they correspond to the period immediately following macroeconomic releases to the plat-

form. The estimated coefficients β1,β2,β3 in the top three rows essentially convey the result

of a placebo test, as they correspond to contests where the macroeconomic variables were not

available on the platform: their negative values indicate poor performance in that sub-period,

in agreement with the fact that investors do not make use of the macroeconomic variables

(that they do not have access to yet). The estimated coefficients γ1,γ2,γ3 in the bottom three

rows are driven by contests where the additional predictive signals were indeed available: this

time, they are positive and increasing as the investors participate in one additional trading

contest (γ2 in the fifth row), matching the general pattern that we have encountered in our

main empirical results (Table 8).

Moving from columns (1) through to (4) of Table 14 increases the delay between the release

of macroeconomic observations to the platform and the period upon which the Sharpe Ratios

are estimated. In the first three rows (i.e. the placebo test), the estimates for the coefficients

β1,β2,β3 are either mixed in sign or (for β3) increasing with the delay. The next three rows

correspond to contests where the additional (macroeconomic) predictive signals were available

to the investors: in contrast to the placebo rows above them, the estimates for the coefficients

γ1,γ2,γ3 in column (1) are higher than those in column (4), indicating that investors outperform

in the period immediately following the additional data releases. This suggests that investors

with access to additional predictive variables do indeed make use of them, to varying degrees.

Furthermore, the increase in performance from investors participating in a second contest

compared to the first (i.e. γ2 − γ1, visible by comparing the fourth and fifth rows) is greater

in column (1) than it is in column (4), indicating that investors learn to perform better with

experience during the period immediately following the additional data releases, in particular.

This observation supports the notion that, as investors learn with experience, they learn to

make better use of the additional (low-frequency macroeconomic) variables rather being able

to immediately make full use of them. Therefore, our empirical results are consistent with

our hypothesized mechanism that, with experience, an investor’s subjective model uncertainty

decreases, leading her to make use of more of the predictive signals available to her in order to

maximize her objective.

7 Conclusion

Using a novel panel of systematic investor outcomes from an institutional setting that controls

investors’ preferences, horizons and (crucially) the information they can use to make trading

decisions, we studied how investors learn with experience, based upon historical data, and in
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response to additional predictive signals. As well as confirming existing results on investor

learning (experience, attrition & overconfidence effects) we characterised the relative impor-

tance of in- and out-of-sample learning channels: the former better explains our observed

learning effects.

Importantly, we considered the impact of additional predictive variables in the common

parts of investors’ information sets (i.e. a widening of this common dataset). We found

that individual-level dispersions of investors’ outcomes narrowed with the availability of these

additional predictive variables, which has implications for models of investor learning. The

levels of investors’ performance outcomes improved with the availability of these additional

predictive variables, for experienced investors in particular. This suggests that experienced

investors were able to make use of the wider data to better attain their objectives.

To explain why inexperienced investors did not exhibit a statistically significant improve-

ment in performance, we theorised that a fear of model uncertainty may lead them to choose

to ignore some predictive variables. We formalised this explanation by developing a model of

portfolio choice with robust learning, and suggested a link between an investor’s fear of model

uncertainty and her level of experience. Much like theories of “learning by doing” (Arrow,

1962; Seru et al., 2010), this model can explain why investors who make use of historical data

improve their performance outcomes with experience; our model goes further by also explain-

ing why performance outcomes steepen with experience when additional predictive signals are

available to investors. We provided further empirical evidence in support of this mechanism.

Our findings contribute to the literatures on investor learning and the empirics of informa-

tion in asset pricing – both of which are very relevant in a Big Data world – as well as towards

a better understanding of the ever-growing category of systematic investors. We hope that our

model of robust learning will be useful in other economic settings.
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Table 1: High-level descriptors of the 12 contests in our data sample.

Contest index Live trading period Number of
contestants

Mean entries per
contestant

1 2014-12-01 – 2015-01-31 13 1.31
2 2015-07-01 – 2015-09-30 16 3.62
3 2015-10-01 – 2015-12-31 23 1.17
4 2016-01-01 – 2016-03-31 30 3.53
5 2016-04-01 – 2016-06-30 38 4.05
6 2016-08-01 – 2016-10-31 87 3.02
7 2017-01-01 – 2017-03-31 125 2.54
8 2017-04-15 – 2017-07-31 92 3.50
9 2017-10-01 – 2018-01-31 163 2.31
10 2018-02-01 – 2018-05-31 63 3.73
11 2018-07-01 – 2018-10-31 95 2.88
12 2019-01-01 – 2019-04-30 129 3.13

Total: 874 2.92
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Table 2: Participation attributes of individual contestants i at contests t, before and after the additional predictive variables were
made available to contestants by the trading platform.

Before (N=502) After (N=289)

Mean Std. Dev. Mean Std. Dev. Diff. in Means p value

Contests experiencedi,t 1.0796 0.3183 1.1135 0.4344 0.0340 0.2080
Percentile(ScoreBest

i,t−1) 0.6445 0.2570 0.7175 0.2595 0.0730 0.3078

Note: the reported p-values are from two-sided t-tests.

Table 3: Participation attributes aggregated at the contest level (t), before and after the additional predictive variables were made
available to contestants by the trading platform.

Before (N=6) After (N=4)

Mean Std. Dev. Mean Std. Dev. Diff. in Means p value

Meant(Contests experiencedi,t) 1.2281 0.0394 1.3823 0.1531 0.1542 0.1357
Fraction of first-time contestants at t 0.8374 0.0482 0.8282 0.0491 -0.0092 0.7794
Fraction of last-time contestants at t 0.7774 0.0731 0.8366 0.0603 0.0593 0.2024

Note: the reported p-values are from two-sided t-tests. For mechanical reasons, the first contest is excluded
(because its fraction of first-time contestants would be 1.0) and the last contest is excluded (because its

fraction of last-time contestants would be 1.0).
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Table 4: OLS & panel regressions of in-sample (“backtest”) & out-of-sample (“live”) perfor-
mance outcomes against experience.

Dependent variable:

Backtest SRBest
i,t Live SRBest

i,t

OLS panel OLS panel
linear linear

(1) (2) (3) (4)

Contests experiencedi,t 1.161∗∗∗ 1.338∗∗∗ 0.445∗∗ 1.261∗∗∗

(0.055) (0.505) (0.178) (0.456)

Intercept Ø Ø
Contest FEs Ø Ø
Contestant FEs Ø Ø

Observations 874 874 874 874
R2 0.156 0.024 0.035 0.040

Note: standard errors (in parentheses) are robust to heteroskedasticity and are
double-clustered by contest and contestant. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 5: OLS & panel regressions of out-of-sample performance against experience, backtest performance, and prior contest rank.

Dependent variable:

Live SRBest
i,t

OLS panel
linear

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Contests experiencedi,t 0.445∗∗ −0.046 −0.044 0.504∗∗∗ −0.258 −0.280 1.261∗∗∗ 0.912∗ 0.894
(0.178) (0.177) (0.192) (0.165) (0.219) (0.256) (0.456) (0.485) (0.582)

Backtest SRBest
i,t 0.048 0.050 0.034 0.008 0.136∗∗ 0.130

(0.041) (0.092) (0.077) (0.136) (0.064) (0.104)

Log Percentile(ScoreBest
i,t−1) 0.817∗∗ 0.818∗∗ 0.888∗ 0.876 −1.963∗∗ −1.970∗∗

(0.381) (0.384) (0.526) (0.554) (0.838) (0.890)

Contests experiencedi,t × Backtest SRBest
i,t −0.001 0.008 0.003

(0.022) (0.032) (0.037)

Intercept Ø Ø Ø
Contest FEs Ø Ø Ø Ø Ø Ø
Contestant FEs Ø Ø Ø
Observations 874 124 124 874 124 124 874 124 124
R2 0.035 0.045 0.045 0.044 0.049 0.049 0.040 0.088 0.088

Note: standard errors (in parentheses) are robust to heteroskedasticity and are double-clustered by contest and contestant. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 6: Poisson GLM regressions of contestants’ number of entries in a contest against expe-
rience and performance measures.

Dependent variable:

Entriesi,t

(1) (2) (3) (4)

Contests experiencedi,t 0.390∗∗∗ 0.344∗∗∗ 0.182∗∗∗ 0.196∗∗∗

(0.045) (0.044) (0.069) (0.067)

Live SRBest
i,t 0.166∗∗∗ 0.086∗∗∗

(0.029) (0.032)

Log Percentile(ScoreBest
i,t−1) 0.777∗∗ 0.677∗∗

(0.344) (0.335)

Contestantst −0.0005
(0.002)

Intercept Ø Ø Ø Ø

Observations 874 874 124 124

Note: standard errors (in parentheses) are robust to heteroskedasticity.
∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 7: Heckit (i.e. Type II Tobit) two-stage selection models for implementing selection bias
corrections to the regression of out-of-sample performance against experience. The first stage
models the probability of participation, while the second stage models the outcome of interest.

All contestants Repeated contestants

Stage Live SRBest
i,t Live SRBest

i,t Live SRBest
i,t Live SRBest

i,t

1. Selection (Intercept) 1.95∗∗∗ −2.58∗∗∗ 1.69∗∗∗ −0.35

(0.18) (0.53) (0.44) (0.79)

Contests experiencedi,t −0.88∗∗∗ 0.33∗∗∗ −0.39∗∗∗ −0.25∗∗∗

(0.05) (0.06) (0.07) (0.08)

Quantopian search indext −0.01∗∗ −0.01∗∗ 0.00 0.00

(0.00) (0.00) (0.01) (0.01)

Ratio of entries to contest meani,t−1 0.23∗∗∗ 0.34∗∗∗ 0.14∗∗∗ 0.13∗∗

(0.04) (0.05) (0.05) (0.06)

Log Percentile(ScoreBest
i,t−1) 0.28∗∗ 0.37∗∗

(0.11) (0.16)

2. Outcome (Intercept) −0.42∗∗∗ 0.77 1.50∗∗∗ −0.05

(0.13) (2.94) (0.39) (3.07)

Contests experiencedi,t 0.84∗∗∗ −0.20 0.20 0.17

(0.17) (0.21) (0.23) (0.27)

Log Percentile(ScoreBest
i,t−1) 0.50 0.41

(0.54) (0.69)

Inverse Mills Ratio −0.83∗∗∗ −0.81 −1.64 −1.91

(0.32) (0.56) (1.32) (1.86)

σ 2.13 2.77 2.84 2.97

ρ −0.39 −0.29 −0.58 −0.64

R2 0.04 0.05 0.01 0.04

Adj. R2 0.04 0.03 −0.00 0.02

Num. obs. 1482 745 233 174

Censored 621 621 50 50

Observed 861 124 183 124

Note: parentheses denote standard errors. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 8: OLS regressions of out-of-sample performance against additional data availability & experience. The dependent variable
in columns (1)-(3) does not use a benchmark, so there is no control for time periods; the dependent variable in columns (4)-(6)
uses the excess out-of-sample Sharpe Ratio over the Sharpe Ratio of the benchmark index during that out-of-sample period, which
effectively controls for time periods/contests. In all regressions, the only contestants under consideration are those that have
competed entirely before or after the new predictive variables were added to the platform.

Dependent variable:

Live SRBest
i,t Live SRBest

i,t − Benchmark SRt

(1) (2) (3) (4) (5) (6)

(Intercept) −0.034 −0.363 −0.329 −1.459∗∗∗ −1.382∗∗∗ −1.346∗∗∗
(0.334) (0.250) (0.248) (0.351) (0.422) (0.428)

1{Contests experiencedi,t = 2} 0.925∗∗ 0.942∗∗∗ 0.505 1.211∗∗∗ 1.207∗∗∗ 0.863∗∗

(0.364) (0.348) (0.521) (0.274) (0.263) (0.340)

1{Contests experiencedi,t = 3} 1.500 1.356 −0.231 2.712∗∗ 2.746∗∗ 0.312
(1.660) (1.712) (0.248) (1.152) (1.258) (0.428)

1{Contests experiencedi,t = 4} 3.074∗∗∗ 3.056∗∗∗ 2.749∗∗∗ 3.880∗∗∗ 3.884∗∗∗ 2.360∗∗∗

(0.609) (0.564) (0.248) (0.562) (0.584) (0.428)

1{New variables availablet} 0.520 0.466 −0.122 −0.178
(0.524) (0.536) (0.645) (0.659)

1{Contests experiencedi,t = 2} × 1{New variables availablet} 0.725 0.571
(0.670) (0.491)

1{Contests experiencedi,t = 3} × 1{New variables availablet} 1.763 2.695∗

(1.908) (1.446)

1{Contests experiencedi,t = 4} × 1{New variables availablet} 0.464 2.288∗∗∗

(0.828) (0.460)

Observations 790 790 790 790 790 790
R2 0.029 0.045 0.048 0.052 0.053 0.057

Note: standard errors (in parentheses) are robust to heteroskedasticity and are double-clustered by contest and contestant.
∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 9: OLS regressions of out-of-sample performance against additional data availability, experience & in-sample performance.
The dependent variable in columns (1)-(3) does not use a benchmark, so there is no control for time periods; the dependent variable
in columns (4)-(6) uses the excess out-of-sample Sharpe Ratio over the Sharpe Ratio of the benchmark index during that out-of-
sample period, which effectively controls for time periods/contests. In all regressions, the only contestants under consideration are
those that have competed entirely before or after the new predictive variables were added to the platform.

Dependent variable:

Live SRBest
i,t Live SRBest

i,t − Benchmark SRt

(1) (2) (3) (4) (5) (6)

Contests experiencedi,t 0.561 0.555 0.489∗ 0.949∗∗∗ 0.951∗∗∗ 0.686∗∗∗

(0.386) (0.384) (0.253) (0.230) (0.234) (0.199)

Backtest SRBest
i,t 0.099∗∗ 0.092∗∗ 0.215 0.083∗ 0.085∗ 0.226

(0.043) (0.043) (0.146) (0.048) (0.048) (0.229)

1{New variables availablet} 0.488 0.435 −0.144 −0.492
(0.520) (0.900) (0.639) (0.895)

Contests experiencedi,t × 1{New variables availablet} 0.103 0.386
(0.590) (0.351)

Backtest SRBest
i,t × 1{New variables availablet} −0.130 −0.155

(0.152) (0.234)

Intercept Ø Ø Ø Ø Ø Ø
Observations 791 791 791 791 791 791
R2 0.041 0.055 0.056 0.058 0.059 0.060

Note: standard errors (in parentheses) are robust to heteroskedasticity and are double-clustered by contest and contestant.
∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 10: OLS regressions of out-of-sample daily return means against additional data availability & experience. The dependent
variable in columns (1)-(3) does not use a benchmark, so there is no control for time periods; the dependent variable in columns
(4)-(6) adjusts the daily returns using the benchmark portfolio.

Dependent variable:

Mean of Live daily returns (%) for contestant i’s best entry at contest t

Raw returns Excess returns over the benchmark

(1) (2) (3) (4) (5) (6)

(Intercept) −0.150∗∗ −0.008 0.002 −0.171∗∗ −0.019∗∗∗ −0.010∗
(0.068) (0.007) (0.006) (0.068) (0.007) (0.006)

1{Contests experiencedi,t = 2} 0.158∗∗ 0.153∗∗ −0.002 0.167∗∗ 0.162∗∗ 0.012
(0.069) (0.069) (0.012) (0.069) (0.069) (0.016)

1{Contests experiencedi,t = 3} 0.163∗∗ 0.220∗∗ −0.017∗∗∗ 0.178∗∗∗ 0.239∗∗ −0.020∗∗∗
(0.069) (0.098) (0.006) (0.069) (0.099) (0.006)

1{New variables availablet} −0.225∗∗ −0.240∗∗ −0.239∗∗ −0.254∗∗
(0.101) (0.108) (0.101) (0.108)

1{Contests experiencedi,t = 2} × 1{New variables availablet} 0.254∗∗ 0.244∗∗

(0.109) (0.109)

1{Contests experiencedi,t = 3} × 1{New variables availablet} 0.271∗∗ 0.296∗∗∗

(0.109) (0.108)

Observations 674 674 674 674 674 674
R2 0.001 0.005 0.005 0.001 0.006 0.006

Note: standard errors (in parentheses) are robust to heteroskedasticity and are clustered by contest. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 11: OLS regressions of out-of-sample daily return standard deviations against additional data availability & experience. The
dependent variable in columns (1)-(3) does not use a benchmark, so there is no control for time periods; the dependent variable in
columns (4)-(6) adjusts the daily returns using the benchmark portfolio.

Dependent variable:

SD of Live daily returns (%) for contestant i’s best entry at contest t

Raw returns Excess returns over the benchmark

(1) (2) (3) (4) (5) (6)

(Intercept) 0.820∗∗∗ 0.696∗∗∗ 0.687∗∗∗ 0.904∗∗∗ 0.773∗∗∗ 0.760∗∗∗

(0.143) (0.064) (0.066) (0.143) (0.062) (0.063)

1{Contests experiencedi,t = 2} −0.431∗∗∗ −0.426∗∗∗ −0.301∗∗∗ −0.417∗∗∗ −0.413∗∗∗ −0.219∗∗
(0.149) (0.146) (0.094) (0.148) (0.145) (0.092)

1{Contests experiencedi,t = 3} −0.489∗∗∗ −0.539∗∗∗ −0.230∗∗∗ −0.457∗∗∗ −0.510∗∗ 0.027
(0.154) (0.206) (0.066) (0.153) (0.208) (0.063)

1{New variables availablet} 0.197 0.210 0.207 0.227
(0.219) (0.233) (0.218) (0.232)

1{Contests experiencedi,t = 2} × 1{New variables availablet} −0.204 −0.316
(0.248) (0.245)

1{Contests experiencedi,t = 3} × 1{New variables availablet} −0.352 −0.610∗∗∗
(0.241) (0.236)

Observations 674 674 674 674 674 674
R2 0.001 0.002 0.002 0.001 0.002 0.002

Note: standard errors (in parentheses) are robust to heteroskedasticity and are clustered by contest. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

45



Table 12: OLS regressions of individual (contestant-level) dispersions (calculated as the range, i.e. best/max minus worst/min) of
contestants’ Backtest and Live Sharpe Ratios, against additional data availability & experience.

Dependent variable:

Rangei,t(Backtest SRi, j,t) Rangei,t(Live SRi, j,t)

(1) (2) (3) (4) (5) (6) (7) (8)

1{New variables availablet} 0.193∗ 0.114 0.134 0.114 −0.129 −0.216 −0.187 −0.257∗∗

(0.107) (0.087) (0.097) (0.091) (0.167) (0.163) (0.118) (0.114)

Contests experiencedi,t 0.666∗∗∗ 0.357∗∗∗ −0.136∗ 0.729∗∗∗ 0.282∗∗ 0.272∗∗

(0.055) (0.074) (0.070) (0.146) (0.130) (0.118)

Entriesi,t 0.123∗∗∗ 0.055∗ 0.178∗∗∗ 0.179∗∗∗

(0.042) (0.029) (0.023) (0.023)

Backtest SRMean
i,t 0.863∗∗∗

(0.175)

Live SRMean
i,t 0.157∗∗∗

(0.037)

Intercept Ø Ø Ø Ø Ø Ø Ø Ø

Observations 874 874 874 874 874 874 874 874
R2 0.002 0.088 0.209 0.550 0.001 0.115 0.396 0.414

Note: standard errors (in parentheses) are robust to heteroskedasticity and are double-clustered by contest and contestant.
∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 13: OLS regressions of the aggregate (i.e. contest-level) dispersions (standard deviations)
of contestants’ best Backtest and Live Sharpe Ratios, against additional data availability.

Dependent variable:

SDt(Backtest SR
Best
i,t ) SDt(Live SR

Best
i,t )

(1) (2) (3) (4)

1{New variables availablet} 1.783∗∗∗ 1.075∗∗ −0.259 0.263
(0.448) (0.502) (0.325) (0.374)

Meant(Contests experiencedi,t) 4.511∗∗∗ −3.416∗∗

(1.218) (1.547)

Meant(Entriesi,t) −0.114 0.125
(0.179) (0.151)

Intercept Ø Ø Ø Ø

Observations 12 12 12 12
R2 0.656 0.824 0.052 0.403

Note: standard errors (in parentheses) are robust to heteroskedasticity.
∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 14: OLS regressions of Sharpe Ratios (computed from daily returns in excess of benchmark returns) for trading week t
following macroeconomic announcement dates (as recorded on the trading platform). The dependent variables are computed from
trading strategy daily returns in excess of matched benchmark index daily returns.

SRi,t computed on post-release periods

Trading Trading Trading Trading
Days 1-5 Days 6-10 Days 11-15 Days 16-20

(Intercept) −0.437∗∗∗ 0.065 0.142∗∗∗ −0.403∗∗∗

(0.024) (0.059) (0.030) (0.016)

1{Contests experiencedi,t = 2} −0.036 0.054 0.044 0.001
(0.054) (0.104) (0.100) (0.044)

1{Contests experiencedi,t = 3} −0.131∗∗∗ −0.096 0.121∗∗∗ 0.194∗∗∗

(0.024) (0.059) (0.030) (0.016)

1{New variables availablet} 0.042 −0.136∗∗ −0.011 0.013
(0.026) (0.064) (0.036) (0.019)

1{Contests experiencedi,t = 2} × 1{New variables availablet} 0.778∗∗∗ 0.670∗∗ 0.691∗∗ 0.484∗∗

(0.183) (0.278) (0.281) (0.194)

1{Contests experiencedi,t = 3} × 1{New variables availablet} 0.706∗∗∗ 0.733∗∗∗ 0.664∗∗∗ 0.072
(0.257) (0.241) (0.225) (0.197)

Observations 674 674 674 674
R2 0.166 0.159 0.165 0.068

Note: standard errors (in parentheses) are robust to heteroskedasticity and are double-clustered by contest and contestant.
∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Figure 1: Stylised illustration of how datasets may lengthen over time, or widen with the
addition of one or more predictive signals.
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Figure 2: Stylised illustration of how the Backtest period for each contest expands over time,
and the Live period is a predefined future period.
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Figure 3: Box plots of the distributions of Live (out-of-sample) Sharpe Ratios, conditioning by
contest index only. The second plot shows the subset of contestants’ best entries per contest.
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Figure 4: Proportions of contestants for whom this is the first contest, and those for whom this
is the last contest (with breakdowns of the latter).

Entry & exit of contestants

contest index t

%
ge

 o
f c

on
te

st
an

ts

0

20

40

60

80

2 3 4 5 6 7 8 9 10 11

●

●

●

●

● ●

●
●

●

●

First contest
Last contest: all

Last contest: of which first time
Last contest: of which repeated

●

50



Figure 5: Illustration of soft-thresholding an input. The dashed line is an example input
f (x) = x . The blue line f (x) = sign(x)max{|x | −λ, 0}) is the result of soft-thresholding that
input at threshold λ.
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Appendix

A Entering a trading contest

To make the institutional setting of Section 3 more concrete, we review the steps necessary to

participate in a contest from the point of view of a systematic investor. Figure 6 shows an ex-

ample of how to write (in Python) a systematic trading strategy that simply takes long positions

in all available futures contracts. More sophisticated strategies are, of course, encouraged.

After coding up such a systematic trading strategy, the systematic investor can then use the

Quantiacs platform to run a backtest of the strategy using historical market data. Figure 7

shows the output of such a backtest, for the long-only strategy of our above example. Various

performance metrics are provided, but all are calculated on historical data, and we refer to this

pre-contest period as the in-sample period.

The systematic investormay then decide to officially submit this trading strategy to a contest:

if so, we call this the contestant’s entry. Once a contest has begun (i.e. during the live/out-of-

sample period), entries can no longer be modified, and the contestant has effectively committed

to following that systematic trading strategy for the duration of the live/out-of-sample period.

After the contest ends, the out-of-sample Sharpe Ratios are made available, the contestants are

ranked, and results are displayed in a leaderboard, as in Figure 8.
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Figure 6: Example of writing code (in Python) while logged into the trading platform in order
to define a (simple long-only) systematic trading strategy, ahead of possible entry into a trading
contest.
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Figure 7: Example of backtest results for a systematic trading strategy, before an entry is
submitted. At this point, a trading contest has not begun.
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Figure 8: Excerpt from a contest leaderboard, showing both in-sample and out-of-sample
Sharpe Ratios, after a trading contest has ended. The “live test” performance metrics were
calculated once the contest period (1 January to 30 April 2019, in this case) had ended.
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B Macroeconomic variables added between contests

On 22March 2017, Quantiacs announced in a blog post that 54macroeconomic data series would

be made available to all contests from the 8th contest onwards, for use in both backtesting and

live trading. The observations available on the trading platform are almost all at a monthly

frequency.17 The variables are listed in Table 15.

Table 15: Macroeconomic variables added before the 8th contest.

Macroeconomic variable Quantiacs identifier

1 ADP Employment Change USA_ADP

2 Average Hourly Earnings USA_EARN

3 Average Weekly Hours USA_HRS

4 Balance of Trade USA_BOT

5 Business Confidence USA_BC

6 Business Inventories USA_BI

7 Capacity Utilization USA_CU

8 Capital Flows USA_CF

9 Challenger Job Cuts USA_CHJC

10 Chicago Fed National Activity Index USA_CFNAI

11 Chicago Pmi USA_CP

12 Consumer Credit USA_CCR

13 Consumer Price Index CPI USA_CPI

14 Core Consumer Prices USA_CCPI

15 Core Inflation Rate USA_CINF

16 Dallas Fed Manufacturing Index USA_DFMI

17 Durable Goods Orders USA_DUR

18 Durable Goods Orders Ex Transportation USA_DURET

19 Export Prices USA_EXPX

20 Exports USA_EXVOL

21 Factory Orders Ex Transportation USA_FRET

22 Foreign Bond Investment USA_FBI

23 Government Budget Value USA_GBVL

24 Government Payrolls USA_GPAY

25 Housing Index USA_HI

26 Import Prices USA_IMPX

27 Imports USA_IMVOL

28 Industrial Production USA_IP

29 Industrial Production Mom USA_IPMOM

30 Inflation Rate USA_CPIC

17Observations for three of the macroeconomic variables (USA_EXPX, USA_IMPX, USA_NFIB) were available
only at a quarterly frequency for part of the backtest period, but were since made available at a monthly frequency
(like the remaining variables) and the majority of their observations are at a monthly frequency.
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Macroeconomic variable Quantiacs identifier

31 Inflation Rate Mom USA_CPICM

32 Job Offers USA_JBO

33 Labor Force Participation Rate USA_LFPR

34 Leading Economic Index USA_LEI

35 Manufacturing Payrolls USA_MPAY

36 Manufacturing Production USA_MP

37 Nahb Housing Market Index USA_NAHB

38 Net Long Term Tic Flows USA_NLTTF

39 NFIB Business Optimism Index USA_NFIB

40 Non Farm Payrolls USA_NFP

41 Non Manufacturing PMI USA_NMPMI

42 Nonfarm Payrolls Private USA_NPP

43 NY Empire State Manufacturing Index USA_EMPST

44 Pending Home Sales USA_PHS

45 Philadelphia Fed Manufacturing Index USA_PFED

46 Producer Prices USA_PP

47 Producer Prices Change USA_PPIC

48 Retail Sales MoM USA_RSM

49 Retail Sales YoY USA_RSY

50 Retail Sales Ex Autos USA_RSEA

51 Richmond Fed Manufacturing Index USA_RFMI

52 Total Vehicle Sales USA_TVS

53 Unemployment Rate USA_UNR

54 Wholesale Inventories USA_WINV
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C Futures contracts

This appendix lists the futures contracts that participants’ strategies are able to trade. For each

future, the trading platform selected a single contract maturity that was available for trading

at each point in time. Our procedure for downloading this historical data and constructing a

benchmark futures portfolio was detailed in Section 4.4.

Table 16: Tradable futures on Quantiacs that we used to construct a benchmark index. (Note
that we used the underlying Russell index for row 33).

Quantiacs

ticker

Name Type Matching Bloomberg

base code

1 F_AD Australian Dollar Currency AD Curncy

2 F_BO Soybean Oil Agriculture BO Comdty

3 F_BP British Pound Currency BP Curncy

4 F_C Corn Agriculture C Comdty

5 F_CC Cocoa Agriculture CC Comdty

6 F_CD Canadian Dollar Currency CD Curncy

7 F_CL WTI Crude Oil Energy CL Comdty

8 F_CT Cotton Agriculture CT Comdty

9 F_DX US Dollar Index Currency DX Curncy

10 F_EC Euro FX Currency EC Curncy

11 F_ED Eurodollars Interest Rate ED Comdty

12 F_ES E-mini S&P 500 Index Index ES Index

13 F_FC Feeder Cattle Agriculture FC Comdty

14 F_FV 5-year Treasury Note Bond FV Comdty

15 F_GC Gold Metal GC Comdty

16 F_HG Copper Metal HG Comdty

17 F_HO Heating Oil Energy HO Comdty

18 F_JY Japanese Yen Currency JY Curncy

19 F_KC Coffee Agriculture KC Comdty

20 F_LB Lumber Agriculture LB Comdty

21 F_LC Live Cattle Agriculture LC Comdty

22 F_LN Lean Hogs Agriculture LH Comdty

23 F_MD E-mini S&P 400 Index FA Index

24 F_MP Mexican Peso Currency PE Curncy

25 F_NG Natural Gas Energy NG Comdty

26 F_NQ E-mini Nasdaq 100 Index Index NQ Index

27 F_NR Rough Rice Agriculture RR Comdty

28 F_O Oats Agriculture O Comdty

29 F_OJ Orange Juice Agriculture JO Comdty

30 F_PA Palladium Metal PA Comdty

31 F_PL Platinum Metal PL Comdty

32 F_RB Gasoline Energy XB Comdty
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Quantiacs

ticker

Name Type Matching Bloomberg

base code

33 F_RU Russell 2000 Index RTY Index

34 F_S Soybeans Agriculture S Comdty

35 F_SB Sugar Agriculture SB Comdty

36 F_SF Swiss Franc Currency SF Curncy

37 F_SI Silver Metal SI Comdty

38 F_SM Soybean Meal Agriculture SM Comdty

39 F_TU 2-year Treasury Note Bond TU Comdty

40 F_TY 10-year Treasury Note Bond TY Comdty

41 F_US 30-year Treasury Bond Bond US Comdty

42 F_W Wheat Agriculture W Comdty

43 F_XX Dow Jones STOXX 50 Index VG Index

44 F_YM E-mini Dow Jones Industrial Average Index DM Index

45 F_AX DAX Index GX Index

46 F_CA CAC40 Index CF Index

47 F_DT EURO Bond Bond RX Comdty

48 F_UB EURO Bobl Bond OE Comdty

49 F_UZ EURO Schatz Bond DU Comdty

50 F_GS 10-Year Long Gilt Bond G Comdty

51 F_LX FTSE 100 Index Index Z Index

52 F_SS 3-Month Short Sterling Interest Rate L Comdty

53 F_DL Milk Class III Agriculture DA Comdty

54 F_ZQ 30-Day Fed Funds Interest Rate FF Comdty

55 F_VX Volatilty Index Index UX Index

56 F_AE AEX Index Index EO Index

57 F_BG Gas Oil Energy QS Comdty

58 F_BC Brent Crude Oil Energy CO Comdty

59 F_LU Rotterdam Coal Energy XA Comdty

60 F_DM MDAX Index Index MF Index

61 F_AH Bloomberg Commodity Index Index DN Index

62 F_CF 10y Swiss Note Bond SWC Comdty

63 F_DZ TechDAX Index DP Index

64 F_FB DJ Stoxx Bank 600 Index BJ Index

65 F_FL Chicago Ethanol Energy CUA Comdty

66 F_FM Stoxx Europe Mid 200 Index SXR Index

67 F_FP OMX Helsinki 25 Index OT Index

68 F_FY Stoxx Europe 600 Index SXO Index

69 F_GX Euro BUXL Bond UB Comdty

70 F_HP Natural Gas Penultimate Energy ZA Comdty

71 F_LR Brazilian Real Currency BR Curncy

72 F_LQ Newcastle Coal Energy XW Comdty

73 F_ND New Zealand Dollar Currency NV Curncy
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Quantiacs

ticker

Name Type Matching Bloomberg

base code

74 F_NY Nikkei 225 Index NI Index

75 F_PQ PSI20 Index PP Index

76 F_RR Russian Ruble Currency RU Curncy

77 F_RF EURO FX/Swiss Franc Currency RF Curncy

78 F_RP EURO FX/British Pound Currency RP Curncy

79 F_RY EURO FX/Japanese Yen Currency RY Curncy

80 F_SH Swiss Mid Cap Index S1 Index

81 F_SX Swiss Market Index SM Index

82 F_TR South African Rand Currency RA Curncy

83 F_EB 3-Month EuriBor Interest Rate ER Comdty

84 F_VF 5-Year Euro Swapnote Bond T Comdty

85 F_VT 10-Year Euro Swapnote Bond P Comdty

86 F_VW 2-Year Euro Swapnote Bond RW Comdty

87 F_GD Goldman Sachs Commodity Index Index GI Index

88 F_F 3-Month EuroSwiss Interest Rate ES Comdty
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D Robustness checks

D.1 Using experience dummies

In this section of the appendix we replace the number of contests integer variable with a set of

dummies in the appropriate regression specifications to verify that our conclusions are robust

to a relaxation of the linear functional form. The direction of the relationship is confirmed.

The robustness results are as follows:

• Table 17 modifies the specification of Table 4.

• Table 18 modifies the specification of Table 5.
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Table 17: OLS & panel regressions of in-sample (“backtest”) & out-of-sample (“live”) perfor-
mance outcomes against experience.

Dependent variable:

Backtest SRBest
i,t Live SRBest

i,t

OLS panel OLS panel
linear linear

(1) (2) (3) (4)

1{Contests experiencedi,t = 2} 2.434∗∗∗ 2.639∗∗∗ 1.391∗∗∗ 1.322∗∗

(0.810) (0.929) (0.320) (0.555)

1{Contests experiencedi,t = 3} 3.846∗∗∗ 3.574∗∗∗ 1.129 1.644∗∗

(0.660) (1.355) (0.785) (0.792)

1{Contests experiencedi,t = 4} 4.940∗∗∗ 4.085∗∗ 1.866∗∗∗ 4.998∗∗∗

(1.795) (1.905) (0.399) (1.415)

1{Contests experiencedi,t = 5} 5.223∗∗∗ 4.448∗∗ 1.892∗∗ 6.279∗∗∗

(1.142) (2.093) (0.883) (1.929)

1{Contests experiencedi,t = 6} 4.044∗∗∗ 6.643∗∗ 1.759 7.740∗∗∗

(0.921) (2.728) (1.404) (2.569)

1{Contests experiencedi,t = 7} 1.919∗∗ 5.530∗ 0.753 9.646∗∗∗

(0.759) (2.940) (0.505) (3.097)

1{Contests experiencedi,t = 8} −0.154∗∗∗ 6.035∗ −1.194∗∗∗ 9.397∗∗∗

(0.037) (3.388) (0.328) (3.345)

Intercept Ø Ø
Contest FEs Ø Ø
Contestant FEs Ø Ø
Observations 874 874 874 874
R2 0.214 0.094 0.058 0.101

Note: standard errors (in parentheses) are robust to heteroskedasticity and are
double-clustered by contest and contestant. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 18: Panel regressions of out-of-sample performance against experience, backtest perfor-
mance, and prior contest rank, with interactions.

Dependent variable:

Live SRBest
i,t

(1) (2) (3) (4)

1{Contests experiencedi,t = 2} 1.322∗∗ 1.137∗

(0.563) (0.585)

1{Contests experiencedi,t = 3} 1.644∗∗ 1.394∗ −0.160 −0.123
(0.804) (0.822) (0.758) (0.871)

1{Contests experiencedi,t = 4} 4.998∗∗∗ 4.713∗∗∗ 2.759∗∗∗ 3.329∗∗

(1.436) (1.470) (1.014) (1.341)

1{Contests experiencedi,t = 5} 6.279∗∗∗ 5.968∗∗∗ 3.834∗∗∗ 3.738∗∗

(1.958) (1.973) (1.478) (1.633)

1{Contests experiencedi,t = 6} 7.740∗∗∗ 7.276∗∗∗ 4.814∗∗ 6.999∗∗∗

(2.608) (2.677) (1.925) (2.022)

1{Contests experiencedi,t = 7} 9.646∗∗∗ 9.259∗∗∗ 6.282∗∗∗ 6.278∗∗

(3.144) (3.183) (2.343) (2.625)

1{Contests experiencedi,t = 8} 9.397∗∗∗ 8.975∗∗∗ 5.793∗∗ 6.840∗∗

(3.395) (3.459) (2.664) (2.674)

Backtest SRBest
i,t 0.070 0.164∗∗ 0.180∗∗

(0.048) (0.074) (0.088)

Log Percentile(ScoreBest
i,t−1) −2.011∗∗ −2.077∗∗

(0.934) (0.954)

Backtest SRBest
i,t × 1{Contests experiencedi,t = 3} 0.035

(0.110)

Backtest SRBest
i,t × 1{Contests experiencedi,t = 4} −0.014

(0.072)

Backtest SRBest
i,t × 1{Contests experiencedi,t = 5} 0.111

(0.198)

Backtest SRBest
i,t × 1{Contests experiencedi,t = 6} −0.322∗∗

(0.139)

Backtest SRBest
i,t × 1{Contests experiencedi,t = 7} 0.443

(0.451)

Contest FEs Ø Ø Ø Ø
Contestant FEs Ø Ø Ø Ø
Observations 188 188 124 124
R2 0.101 0.109 0.215 0.261

Note: standard errors (in parentheses) are robust to heteroskedasticity and are
double-clustered by contest and contestant. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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D.2 Using the official score

In this section of the appendix we repeat our main results using the official scores that partici-

pants receive instead of out-of-sample Sharpe Ratios. An entry’s score is the minimum of its in-

and out-of-sample Sharpe Ratios, so the official score values will sometimes be higher than the

out-of-sample Sharpe Ratios. Our conclusions all carry through when using the official scores

instead of out-of-sample Sharpe Ratios.

The robustness results are as follows:

• Table 19 modifies the specification of Table 5.

• Table 20 modifies the specification of Table 6.

• Table 21 modifies the specification of Table 7.

• Table 22 modifies the specification of Table 18
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Table 19: OLS & panel regressions of official score against experience, backtest performance, and prior contest rank.

Dependent variable:

ScoreBest
i,t

OLS panel
linear

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Contests experiencedi,t 0.392∗∗∗ 0.071 0.016 0.457∗∗∗ 0.040 0.035 0.955∗∗∗ 0.827∗∗∗ 0.842∗∗∗

(0.120) (0.086) (0.070) (0.094) (0.090) (0.087) (0.230) (0.217) (0.251)

Backtest SRBest
i,t 0.107∗∗∗ 0.063 0.151∗∗∗ 0.145∗∗∗ 0.105∗∗∗ 0.110∗∗∗

(0.033) (0.075) (0.036) (0.044) (0.032) (0.042)

Log Percentile(ScoreBest
i,t−1) 0.548∗ 0.543∗ 0.131 0.128 −1.367∗∗∗ −1.361∗∗∗

(0.288) (0.290) (0.340) (0.350) (0.383) (0.377)

Contests experiencedi,t × Backtest SRBest
i,t 0.016 0.002 −0.002

(0.020) (0.010) (0.020)

Intercept Ø Ø Ø
Contest FEs Ø Ø Ø Ø Ø Ø
Contestant FEs Ø Ø Ø
Observations 874 124 124 874 124 124 874 124 124
R2 0.072 0.228 0.232 0.095 0.263 0.263 0.082 0.172 0.172

Note: standard errors (in parentheses) are robust to heteroskedasticity and are double-clustered by contest and contestant. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 20: Poisson GLM regressions of contestants’ number of entries in a contest against
experience and performance measures.

Dependent variable:

Entriesi,t

(1) (2) (3) (4)

Contests experiencedi,t 0.390∗∗∗ 0.260∗∗∗ 0.182∗∗∗ 0.161∗∗

(0.045) (0.049) (0.069) (0.067)

ScoreBest
i,t 0.382∗∗∗ 0.261∗∗∗

(0.043) (0.048)

Log Percentile(ScoreBest
i,t−1) 0.777∗∗ 0.380

(0.344) (0.255)

Contestantst −0.0001
(0.002)

Intercept Ø Ø Ø Ø
Observations 874 874 124 124

Note: standard errors (in parentheses) are robust to heteroskedasticity.
∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 21: Heckit (i.e. Type II Tobit) two-stage selection models for implementing selection
bias corrections to the regression of official score against experience. The first stage models
the probability of participation, while the second stage models the outcome of interest.

All contestants Repeated contestants

Stage ScoreBest
i,t ScoreBest

i,t ScoreBest
i,t ScoreBest

i,t

1. Selection (Intercept) 1.95∗∗∗ −2.58∗∗∗ 1.69∗∗∗ −0.35

(0.18) (0.53) (0.44) (0.79)

Contests experiencedi,t −0.88∗∗∗ 0.33∗∗∗ −0.39∗∗∗ −0.25∗∗∗

(0.05) (0.06) (0.07) (0.08)

Quantopian search indext −0.01∗∗ −0.01∗∗ 0.00 0.00

(0.00) (0.00) (0.01) (0.01)

Ratio of entries to contest meani,t−1 0.23∗∗∗ 0.34∗∗∗ 0.14∗∗∗ 0.13∗∗

(0.04) (0.05) (0.05) (0.06)

Log Percentile(ScoreBest
i,t−1) 0.28∗∗ 0.37∗∗

(0.11) (0.16)

2. Outcome (Intercept) −0.99∗∗∗ −0.20 0.20 −0.57

(0.08) (1.71) (0.25) (2.00)

Contests experiencedi,t 0.75∗∗∗ −0.06 0.37∗∗ 0.33∗

(0.11) (0.12) (0.15) (0.18)

Log Percentile(ScoreBest
i,t−1) 0.41 0.23

(0.31) (0.45)

Inverse Mills Ratio −0.76∗∗∗ −0.78∗∗ −1.95∗∗ −2.16∗

(0.19) (0.33) (0.84) (1.27)

σ 1.33 1.66 1.88 2.09

ρ −0.57 −0.47 −1.04 −1.03

R2 0.09 0.13 0.05 0.12

Adj. R2 0.09 0.11 0.04 0.10

Num. obs. 1482 745 233 174

Censored 621 621 50 50

Observed 861 124 183 124

Note: parentheses denote standard errors. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 22: Panel regressions of official scores against experience, backtest performance, and
prior contest rank, with interactions.

Dependent variable:

ScoreBest
i,t

(1) (2) (3) (4)

1{Contests experiencedi,t = 2} 0.992∗∗∗ 0.735∗∗

(0.323) (0.331)

1{Contests experiencedi,t = 3} 1.716∗∗∗ 1.367∗∗∗ 0.522 0.727∗

(0.439) (0.470) (0.395) (0.422)

1{Contests experiencedi,t = 4} 3.649∗∗∗ 3.251∗∗∗ 2.034∗∗∗ 1.802∗∗

(0.793) (0.812) (0.621) (0.892)

1{Contests experiencedi,t = 5} 4.716∗∗∗ 4.283∗∗∗ 3.274∗∗∗ 2.978∗∗∗

(1.068) (1.040) (0.825) (0.882)

1{Contests experiencedi,t = 6} 4.840∗∗∗ 4.192∗∗∗ 2.890∗∗ 2.933∗∗

(1.388) (1.398) (1.220) (1.294)

1{Contests experiencedi,t = 7} 7.110∗∗∗ 6.570∗∗∗ 5.124∗∗∗ 4.387∗∗∗

(1.571) (1.570) (1.341) (1.662)

1{Contests experiencedi,t = 8} 6.967∗∗∗ 6.379∗∗∗ 5.062∗∗∗ 4.643∗∗∗

(1.705) (1.719) (1.500) (1.595)

Backtest SRBest
i,t 0.098∗∗∗ 0.138∗∗∗ 0.148∗∗

(0.034) (0.042) (0.067)

Log Percentile(ScoreBest
i,t−1) −1.213∗∗∗ −1.206∗∗∗

(0.431) (0.421)

Backtest SRBest
i,t × 1{Contests experiencedi,t = 3} −0.061

(0.073)

Backtest SRBest
i,t × 1{Contests experiencedi,t = 4} 0.004

(0.040)

Backtest SRBest
i,t × 1{Contests experiencedi,t = 5} 0.006

(0.113)

Backtest SRBest
i,t × 1{Contests experiencedi,t = 6} −0.077

(0.065)

Backtest SRBest
i,t × 1{Contests experiencedi,t = 7} 0.158

(0.265)

Contest FEs Ø Ø Ø Ø
Contestant FEs Ø Ø Ø Ø
Observations 188 188 124 124
R2 0.139 0.197 0.288 0.322

Note: standard errors (in parentheses) are robust to heteroskedasticity and are
double-clustered by contest and contestant. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 23: OLS regressions of individual (contestant-level) dispersions (calculated as the range,
i.e. best/max minus worst/min) of contestants’ official scores, against additional data avail-
ability.

Dependent variable:

Rangei,t(Scorei,t)

(1) (2) (3) (4)

1{New variables availablet} −0.159 −0.233∗∗ −0.212∗∗∗ −0.212∗∗∗

(0.107) (0.097) (0.063) (0.060)

Contests experiencedi,t 0.624∗∗∗ 0.291∗∗∗ 0.291∗∗∗

(0.111) (0.107) (0.106)

Entriesi,t 0.133∗∗∗ 0.133∗∗∗

(0.020) (0.020)

ScoreMean
i,t 0.001

(0.036)

Intercept Ø Ø Ø Ø

Observations 874 874 874 874
R2 0.003 0.183 0.516 0.516

Note: standard errors (in parentheses) are robust to heteroskedasticity and are
double-clustered by contest and contestant. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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